Loading Events

View All Events »

Economics Weekly Seminar: Mohammad Arshad Rahman

April 3 @ 1:30 pm - 2:40 pm

  • This event has passed.

Event Details

Title: Flexible Bayesian Quantile Regression in Ordinal Models

Speaker: Mohammad Arshad Rahman, IIT Kanpur

Wednesday, April 3, 1:30 – 2:40pm

AC 02 LR 105

Abstract: This article is motivated by the lack of flexibility in Bayesian quantile regression for ordinal models where the error follows an asymmetric Laplace (AL) distribution. The inflexibility arises because the skewness of the distribution is completely specified when a quantile is chosen. To overcome this shortcoming, we derive the cumulative distribution function (and the moment generating function) of the generalized asymmetric Laplace (GAL) distribution — a generalization of AL distribution that separates the skewness from the quantile parameter — and construct a working likelihood for the ordinal quantile model. The resulting framework is termed flexible Bayesian quantile regression for ordinal (FBQROR) models. However, its estimation is not straightforward. We address estimation issues and propose an efficient Markov chain Monte Carlo (MCMC) procedure based on Gibbs sampling and joint Metropolis-Hastings algorithm. The advantages of the proposed model are demonstrated in multiple simulation studies and implemented to analyze public opinion on homeownership as the best long-term investment in the United States (US) following the Great Recession.


April 3
1:30 pm - 2:40 pm


Department of Economics


AC 02 LR 105