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A structure labeled by {1, 2, 3, 4, 5}



A bijection {1, 2, 3, 4, 5} → {a, b, c , d , e}



Transport of Structure



A Species of Structures

A species of structures produces:

I For every finite set U, a set F [U], called the collection of
F -structures on U.

I For every bijection f : U → V of finite sets, a bijection
F [f ] : F [U]→ F [V ], called the transport of strcture via f .

which satisfy

I If idV : V → V is the identity map, then F [idV ] = idF [V ].

I For bijections f : U → V and g : V →W ,
F [g ◦ f ] = F [g ] ◦ F [f ].
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In the language of category theory

Let FB denote the category whose objects are finite sets and
morphisms are bijections.

A species is a functor F : FB→ FB.
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Some Examples of Species

1. The species G of simple graphs.

2. The species A of rooted trees.

3. The species Gc connected simple grpahs.

4. The species Par of set partitions.

5. The species S of permutations.

6. The species L of linear orders.
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Example: The species of permutations

S-strucure on U

S[U] = {all bijections σ : U → U}.

Transport of structure

If f : U → V is a bijection, then,

σ :u → u′,

if and only if

S[f ](σ) :f (u)→ f (u′).
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Example: The species of linear orders

L-strucure on U

L[U] = {all totals orderings “ ≤ ” of the set U}.

Transport of structure

If f : U → V is a bijection, then,

u ≤ u′ in L[U]

if and only if

f (u) ≤ f (u′) in L[V ].
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Generating series of a species

Let [n] = {1, . . . , n} for each n ≥ 0 (in particular [0] = ∅).
Given a species F , its generating series is the formal power series:

F (z) =
∑
n≥0

|F [n]|
n!

zn.

For example,

G(z) =
∑
n≥0

2(n2)

n!
zn,

A(z) =
∑
n≥0

nn−2

n!
zn,

Gc(z) = log G(z),

Par(z) = exp(exp(z)− 1),

S(z) = L(z) =
1

1− z
.
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Isomorphism of Species

An isomorphism φ : F→̃G of species is a collection of bijections

φU : F [U]→ G [U], for every finite set U,

that respects transport of structure, i.e., for every bijection
f : U → V , the diagram

F [U]

φU
��

F [f ] // F [V ]

φV
��

G [U]
G [f ]
// G [V ]

commutes.
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Equinumerous species

Two species F and G are said to be equinumerous if their
generating functions are equal:

F (z) = G (z).

Obviously,

Isomorphic species are equinumerous,

but the converse fails;

S(z) = L(z), but S and L are not isomorphic.
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Some Fundamental Species

I E [U] = {U}. E (z) = exp(z).

I X [U] =

{
U if |U| = 1,

∅ otherwise.
. X (z) = z .

I 0[U] = ∅. 0(z) = 0.

I 1[U] =

{
{∗} if U = ∅,
∅ otherwise.

,1(z) = 1.
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Visualization on an F -structure on U



The Algebra of Species: Sum

(F + G )[U] = F [U] + G [U](disjoint union).

(F + G )(z) = F (z) + G (z).
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(F · G )[U] =
∑

U1+U2=U

F [U1]× G [U2].
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Example of Product
Let Der be the species of derangements:

Der[U] = {σ ∈ S[U] | σ(u) 6= u for all u ∈ U}.

We have
S = E ·Der
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S = E ·Der

S(z) = exp(z)Der(z)

Der(z) =
1

1− z
exp(−z)

Conclusion:

|Der[n]| = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!

)
.

lim
n→∞

|Der[n]|
|S[n]|

= 1/e.
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The Algebra of Species: Substitution

(F ◦ G )[U] =
∑

π∈Par[U]

F [π]×
∏
V∈π

G [V ].

(F ◦ G )(z) = F (G (z)).
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Example of Substitution

E+ = E − 1.

Par = E ◦ (E+)

Par(z) = exp(exp(z)− 1),

The exponential generating function for Bell numbers.
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The Cycle Index Generating Function

ZF (x1, x2, . . . ) =
∑
n≥0

1

n!

∑
σ∈Sn

|Fix(F [n];σ)|xm1(σ)
1 x

m2(σ)
2 · · · ,

where mi (σ) is the number of i-cycles in the permutation σ, and
Fix(F [n];σ) denotes the number of F -structures on [n] that are
fixed by σ, a permutation of [n].

I ZF (z , 0, 0, . . . ) = F (z).

I ZF (z , z2, . . . ) =
∑

n≥0 |Sn\F [n]|zn (Burnside’s lemma).
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Examples of Cycle Index Generating Functions

ZE (x1, x2, . . . ) =
∞∏
i=1

exp
(xi
i

)
.

ZS(x1, x2, . . . ) =
∞∏
i=1

1

1− xi
.

ZL(x1, x2, . . . ) =
1

1− x1
.
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Algebra of Cycle Index Generating Functions

ZF+G (x1, x2, . . . ) = ZF (x1, x2, . . . ) + ZG (x1, x2, . . . )

ZF ·G (x1, x2, . . . ) = ZF (x1, x2, . . . )ZG (x1, x2, . . . )

ZF◦G (x1, x2, . . . ) = ZF (ZG (x1, x2, . . . ),ZG (x2, x4, . . . ),ZF (x3, x6, . . . ))

= (ZF ◦ ZG )(x1, x2, . . . ).
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ZF◦G (x1, x2, . . . ) = ZF (ZG (x1, x2, . . . ),ZG (x2, x4, . . . ),ZF (x3, x6, . . . ))

= (ZF ◦ ZG )(x1, x2, . . . ).



Symmetric Functions

Power Sum

pk =
∑
i≥1

tki .

Complete

hk =
∑

i1≤···≤ik

ti1 · · · tik .

Elementary

hk =
∑

i1<···<ik

ti1 · · · tik .



Bases of Symmetric Functions

Given an integer partition λ = 1m12m2 · · · , define

pλ =
∞∏
i=1

pmi
i

hλ =
∞∏
i=1

hmi
i

eλ =
∞∏
i=1

emi
i

Then {pλ}, {hλ}, and {eλ} form bases of the space of all
symmetric functions.
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The Frobenius Characteristic

Let (ρ,V ) be a representation of Sn.
Its Frobenius characterisitc is defined as the symmetric function:

chn V =
1

n!

∑
σ∈Sn

tr(ρ(σ);V )
∞∏
i=1

p
mi (σ)
i .

Note that chn V is a homogeneous symmetric function of degree n.

Theorem (Frobenius)

Let Vλ denote the irreducible representation of Sn corresponding to
the partition λ of n. Then

chn Vλ = sλ,

where sλ is the Schur function corresponding to λ.

The fact that irreducible characters form a basis of class functions
of Sn is manifested in the fact that {sλ} form a basis of symmetric
functions.
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Permutation Representations

Let X be a set equipped with an action of Sn.
Let C[X ] denote the set of all C-valued functions on X .
Then C[X ] becomes a representation of Sn via

ρ(σ)f (x) = f (σ−1 · x).

chn C[X ] =
1

n!

∑
σ∈Sn

|Fix(X ;σ)|pm1(σ)
1 p

m2(σ)
2 · · · .



Permutation Representations

Let X be a set equipped with an action of Sn.

Let C[X ] denote the set of all C-valued functions on X .
Then C[X ] becomes a representation of Sn via

ρ(σ)f (x) = f (σ−1 · x).

chn C[X ] =
1

n!

∑
σ∈Sn

|Fix(X ;σ)|pm1(σ)
1 p

m2(σ)
2 · · · .



Permutation Representations

Let X be a set equipped with an action of Sn.
Let C[X ] denote the set of all C-valued functions on X .

Then C[X ] becomes a representation of Sn via

ρ(σ)f (x) = f (σ−1 · x).

chn C[X ] =
1

n!

∑
σ∈Sn

|Fix(X ;σ)|pm1(σ)
1 p

m2(σ)
2 · · · .



Permutation Representations

Let X be a set equipped with an action of Sn.
Let C[X ] denote the set of all C-valued functions on X .
Then C[X ] becomes a representation of Sn via

ρ(σ)f (x) = f (σ−1 · x).

chn C[X ] =
1

n!

∑
σ∈Sn

|Fix(X ;σ)|pm1(σ)
1 p

m2(σ)
2 · · · .



Permutation Representations

Let X be a set equipped with an action of Sn.
Let C[X ] denote the set of all C-valued functions on X .
Then C[X ] becomes a representation of Sn via

ρ(σ)f (x) = f (σ−1 · x).

chn C[X ] =
1

n!

∑
σ∈Sn

|Fix(X ;σ)|pm1(σ)
1 p

m2(σ)
2 · · · .



The Total Frobenius Characteristic

Given a species F , for every n ≥ 0, F [n] inherits an Sn-action

σ · x = F [σ](x).

Therefore, we may consider the family of representations C[F [n]].
The total Frobenius characteristic of F is defined as

chF =
∞∑
n=0

chn C[F [n]].

We have:
chF = ZF (p1, p2, . . . ).

Thus chF and ZF carry the same information.
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Examples of Total Frobenius Characteristic

chE =
∞∑
n=1

hn.

chS =
∞∏
i=1

1

1− pi
.

ch L =
1

1− p1
.



Schur Basis Expansion

chS =
∞∏
i=1

1

1− pi
=
∑
α

pα.

Theorem (Frobenius)

pα =
∑
|λ|=|α|

χλ(α)sλ.

Therefore,

chS =
∑
λ

 ∑
|α|=|λ|

χλ(α)

 sλ.

Corollary

Rows of the character table of Sn have non-negative sum.
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S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



S = E ·Der

Let h = h0 + h1 + · · · . We know that chE = h.

chS = h chDer,

so that
chDer = h−1 chS.

Now

h−1 =

( ∞∏
i=1

1

1− ti

)−1
=
∞∏
i=1

(1− ti ) =
∞∑
i=0

(−1)iei .

Let e =
∑∞

i=0(−1)iei . Therefore,

chDer =
∑
λ

esλ
∑
|α|=|λ|

χλ(α).



By Pieri rules for ek ,

eksλ =
∑

µ−λ is a vert. strip

sµ,

so that
esλ =

∑
µ−λ is a vert. strip

(−1)|µ|−|λ|sµ.

Therefore,

chDer =
∑
µ

sµ
∑

µ−λ is a vert. strip

(−1)|µ|−|λ|χλ(α).

We conclude that, for every partition µ,∑
µ−λ is a vert. strip

(−1)|µ|−|λ|χλ(α) ≥ 0
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∑
µ−λ is a vert. strip

(−1)|µ|−|λ|χλ(α) ≥ 0

Let p(n) denote the number of partitions of n.
Taking µ = (n) gives:

p(n)− p(n − 1) ≥ 0,

the monotonicity of the partition function.
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∑
µ−λ is a vert. strip

(−1)|µ|−|λ|χλ(α) ≥ 0

Let p(n) denote the number of partitions of n.
Taking µ = (1n) gives:

n∑
k=0

(−1)n−k
∑
|α|=k

sgn(α) ≥ 0.

the monotonicity of the partition function.

It is not hard to show
that the number of odd partitions minus the number of even
partitions is equal to the number of self-conjugate partitions.
Therefore

n∑
k=0

(−1)n−kpself-conjugate(k) ≥ 0,

for all n ≥ 0.
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Plethysm

Plethysm is a binary operation (f , g) 7→ f ◦ g on symmetric
functions introduced by D. E. Littlewood.

It is motivated by the process of composition of polynomial
representations of GLn(C).
Plethysm can be characterized by the rules:

I pk ◦ pl = pkl for all k , l ≥ 1,

I For every f , f ◦ pk = pk ◦ f ,

I For every g , f 7→ f ◦ g is a ring homomorphism.

It turns out that plethysm of symmetric functions is also related to
plethysm of species:

chF ◦ G = chF ◦ chG .
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Example

The identity
Par = E ◦ (E − 1)

implies:
chPar = h ◦ (h − 1).
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