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Abstract 10 
 11 
To reduce emissions of carbon and other greenhouse gases on a pathway that does not 12 
overshoot and keeps global average temperature increase to below 1.5o C, it shall be necessary 13 
to rely on nature-based solutions with atmospheric removals. Policies that focus solely on 14 
reducing deforestation will only lower future emissions.  Without activities that create removals 15 
from carbon sequestration it will not be possible to balance residual emissions. On the other 16 
hand, activities that include regeneration or regrowth of tree biomass can be used to create 17 
net-zero emissions through carbon sequestration and atmospheric removals now. Although 18 
much attention has been focused on policy measures for natural forests, new methods with 19 
high resolution remote sensing and deep machine learning are enabling very high resolutions 20 
analysis of carbon individual tree canopies in landscapes with trees outside of forests (TOF). 21 
New allometric scaling models based on tree crowns at very high spatial resolution (<0.5m) can 22 
map large landscapes with millions of trees outside of forests. In addition to carbon removals, 23 
these landscapes are also important to livelihoods for millions of rural farmers and most TOF 24 
activities have the capacity to bring more countries into climate mitigation while also providing 25 
adaptation benefits. Here were present a multi-resolution, multi-sensor method that provides a 26 
way to measure carbon at the individual tree level in TOF landscapes in India. The results of this 27 
analysis show the effectiveness of VHR data compared to Sentinel-2 for applying tree crown 28 
canopy allometric scaling of carbon across large landscapes at the individual tree scale. At the 29 
same time a multi-sensor approach is demonstrated to have multiple advantages over a single 30 
sensor approach.     31 

 32 
1.0 Introduction 33 

Reducing Emissions from Deforestation and Degradation (REDD+) is an important component of 34 
international climate change agreements because it adds a pathway for mitigation through 35 
forest policy and management. Policies and measures for forests have great potential as 36 
mitigation options because they can be focused on both avoiding future emissions and 37 
increasing removals of atmospheric carbon. Thus, it is not surprising that forests receive 38 
considerable attention in the policy dialog on climate change mitigation, and thus an important 39 
focal point for new initiatives that promote private investment and capital flows in high 40 
biomass forest regions. New initiatives for high biomass forests include the Green Gigaton 41 
Challenge, Lowering Emissions by Accelerating Forest finance Coalition (LEAF), or the new 42 
Architecture for REDD+ Transactions (ART). Although proscriptions for forest actions include 43 



restoration of natural forests as a mechanism to remove carbon from the global atmosphere 44 
now, the main emphasis has been on reducing forest deforestation and degradation rates to 45 
avoid emissions in the future.  46 

However, the problem with focusing policies only on reducing deforestation and its avoided 47 
emissions is that, to stabilize climate change below 1.5o C increase in global temperature, there 48 
are few, if any, feasible emission reduction pathways that do not have residual emissions (Buck 49 
et al. 2023). In other words, most emissions pathways do not reduce emissions fast enough nor 50 
intensively enough to avoid an overshooting of the atmospheric carbon loading target level that 51 
averts a 1.5o warming. Thus, many analyses conclude that a net-zero emissions strategy is 52 
needed (Bednar et al. 2021, Fuss et al. 2020), where residual emissions can be offset by 53 
activities that remove carbon from the atmosphere in tandem with activities aimed at reducing 54 
emissions. The concept of global net zero emissions is a way to describe balancing residual 55 
emissions of carbon dioxide with removals of carbon dioxide. Perhaps the best way to create 56 
carbon removals is through land-based activities that include enhancement of carbon 57 
sequestration in regrowing natural forests and in expanding the area and density of trees 58 
outside of forests (TOF). 59 

Many non-forest landscapes, such as agricultural areas, have considerable tree cover, and much 60 
of these TOF lands are increasing biomass, representing important sinks for carbon 61 
sequestration (Akenyemi et al. 2021, Beckshäfer et al. 2017). The most important hotspots are 62 
TOF in agricultural landscapes in semi-arid tropical zones. South Asia is a particularly important 63 
region in this regard.  64 

There is a growing array of demonstrated concepts, frameworks and working models related to 65 
landscape restoration that support the practical implementation of actions aimed at increasing 66 
TOF area and carbon stocks. These include farmer managed natural regeneration practices, the 67 
land degradation neutrality model, a wide variety of agroforestry systems, and other nature-68 
based solution (NbS) options (Melo et al. 2021, Akinyemi et al. 2021, Lohbeck et al. 2020, 69 
Chomba et al. 2020, Griscom et al. 2017). Furthermore, most landscapes with a large presence 70 
of TOF are agricultural, where local communities and households are often economically 71 
depressed, financially poor, and heavily dependent on crop and tree-based resources for their 72 
livelihoods and income. Thus tree-based NbS mitigation interventions and policies are 73 
inherently livelihood strategies as well.  74 

The deployment of actions focused on carbon removals in landscapes dominated by trees 75 
outside of forests depends on having accurate carbon measurement, monitoring, reporting and 76 
verification (MRV) methods and protocols. A key to scaling actions is an MRV system that 77 
covers large areas at scale, even while the spatial resolution of measurement would be the 78 
individual tree. With the increased availability of satellite remote sensing at the resolution <1m, 79 
and machine learning processing models that can segment individual trees from the landscape 80 
background, these MRV systems are possible (Skole et al. 2021, 2021b, Mugabowindekwe et al. 81 
2023).  82 

Most of the development of these tools have been focused on Africa, but the prospect for 83 
similar work in Asia is demonstrated in this paper. In this paper we describe a landscape 84 



approach that embraces TOF as an important element of climate change mitigation and 85 
adaptation, which can increase carbon removals from the atmosphere while providing 86 
enhanced livelihoods and multiple environmental co-benefits. The idea is worth serious 87 
consideration because the potential scale and magnitude of land area in South Asian rural treed 88 
land is extensive. Through strategic policy and economic development interventions, its TOF 89 
area and carbon could be increased and adopted by communities already using traditional TOF 90 
practices.  91 

The idea is also important because TOF systems can have significant benefits for local 92 
communities through agroforestry and other tree-based production systems that bring higher 93 
economic returns to local livelihoods, as well as additional environmental co-benefits from land 94 
rehabilitation. For instance, multifunctional agriculture (Leakey 2017, Minang et al. 2015) has 95 
been demonstrated across South Asia to have social and environmental benefits that can 96 
improve welfare, especially when managed to include income generation activities. Including a 97 
focus on practices that increase income, or “land maxing” (Leakey 2020), extends the land-98 
sparing and land-sharing frameworks in ways that directly benefit farmers, which in turn leads 99 
to further adoption and permanence of carbon in the landscape. For these reasons, and with 100 
the rapidly expanding capacity for robust measurements using Earth observation technologies, 101 
there is strength to the argument that REDD+ would benefit from expanding its current focus 102 
on land use change and forestry to a landscape approach that includes agriculture and other 103 
land uses (Smith et al. 2014).  104 

2.0 Trees Outside of Forests and Climate Change Mitigation Policy 105 

2.1 Policy Drivers for Evidence-based Natural Climate Solutions.  106 

While new public-private partnerships are raising large capital investments for high biomass 107 
forests, including the Green Gigaton Challenge, Lowering Emissions by Accelerating Forest 108 
finance Coalition (LEAF), or the new Architecture for REDD+ Transactions (ART), greater 109 
inclusion of TOF would increase the relevancy and effectiveness of these investments because 110 
they create incentives for tree-based carbon removals in places and ways that matter to people 111 
and livelihoods, and thus better secure permanence and scale from these investments. 112 

There is an urgent need for climate change actions applied across a range of landscapes, 113 
including more than high carbon density forests. One reason for including tree-based NbS, 114 
including TOF, in the overall portfolio of climate actions is that it strengthens policies and 115 
measures for both future emission reductions and current removals. A stronger TOF or other 116 
tree-based NbS focus would enhance meeting net-zero goals by adding landscapes which cover 117 
extensive areas in South Asia. These landscapes have potential for generating large atmospheric 118 
removals while directly contributing to adaptation measures and livelihood enhancements, and 119 
more stable income generation under climate stress conditions. In particular, an NbS or TOF-120 
centered strategy would increase the number of participating countries beyond only those with 121 
high carbon forests. Many developing countries and South Asian countries already include 122 
actions involving TOF removals in their national plans, an emissions reduction category that 123 
surpasses the size of all other priority areas, including the energy sector. Agroforestry is 124 
specifically identified in more than 50% of all domestic Nationally Determined Contributions 125 



(NDC). But for broadly based tree-centered NbS options to be more relevant to widespread 126 
adoption in policy frameworks, the current REDD+ and other forestry mitigation frameworks 127 
will need to be expanded to include agriculture and the AFoLU framework.  128 

Tree-based systems are ubiquitous in the tropics, developing countries, and Asia in particular. 129 
They include both sparse treed ecosystems and a variety of tree-based production systems, 130 
such as agroforestry, ally cropping small-holder plantations, energy farms, shelterbelts, village 131 
or community woodlots, scattered individual trees and other woody perennial establishments 132 
in predominantly small holder agricultural landscapes. Tree-based systems provide important 133 
value chains from natural products and numerous indirect co-benefits for billions of people, 134 
including water retention, increased site fertility and productivity, food security, livestock 135 
fodder, energy from fuelwood and charcoal, direct incomes, conservation of biodiversity, and 136 
provision of timber and non-timber products. TOF systems enable smallholders to create a 137 
diversified portfolio of products other than annual crops alone, often with significantly higher 138 
economic value compared to annual crops. These TOF systems also sequester and store carbon 139 
and buffer against adverse impacts of climate change; increasingly TOF systems are an integral 140 
component of new strategies for climate-smart agriculture promoted by the government as 141 
well as non-government organizations and the Indian private sector. 142 

2.2 Trees Outside of Forest and REDD+  143 

Land Use, Land Use Change, and Forestry (LULUCF) has been the carbon inventory sector that 144 
covers emissions and removals of greenhouse gases resulting from direct human-caused land 145 
cover change and forestry activities. Methods and protocols for LULUCF have been specified by 146 
the Intergovernmental Panel on Climate Change (IPCC) and defined in decisions made by the 147 
Conference of the Parties in the United Nations Framework Convention on Climate Change. 148 
Largely, the REDD+ framework is LULUCF-focused. Although agriculture has been important to 149 
climate change mitigation efforts generally, the framework for Agriculture, Forestry and Other 150 
Land Uses (AFOLU) has not been prominent in the dialog on REDD+, even though Nationally 151 
Determined Contributions from many countries in Asia prominently feature tree-based 152 
activities in non-forest landscapes. 153 

Figure 1 presents an idealized timeline for a parcel of forest or woodland, showing a range of 154 
land cover conditions and carbon stocking levels broadly representing the five REDD+ scope 155 
elements in forests (green-shaded end panels), with the inclusion of the AFOLU components in 156 
non-forest land (beige-shaded middle panel). The five scope elements of REDD are: 157 
conservation of carbon stocks, reduced emissions from deforestation, reduced emissions from 158 
degradation, sustainable forest management, and enhancements of carbon stocks. This 159 
figurative timeline begins with extant forest cover (conservation, avoided emissions) and 160 
transitions to forest management (sustainable forest management), followed by a period of 161 
forest degradation in which carbon stocks are depleted but the cover type remains forest. Using 162 
a definition of forest that includes cover fraction (e.g., greater than 10%), deforestation occurs 163 
when carbon stocks decline, converting to agriculture or non-forest degraded shrubland. Non-164 
forest land contains trees outside of forests, including remnant trees, naturally occurring trees, 165 
agroforestry, other cultivated trees, small orchards and plantations, and trees managed for land 166 
or biomass restoration. Restocking of the landscape with trees through farmer-managed 167 



natural regeneration or forest landscape restoration may occur, and this establishes the last 168 
REDD+ scope element with the enhancements of carbon stocks. But all of these REDD+ scope 169 
elements apply to TOF landscapes just as much as to forests. 170 

 171 

Figure 1. The scope elements of REDD+ and their relation to LULUCF and AFOLU. The green-shaded 172 
areas of the figurative timeline are current scope elements in the REDD+ framework. TOF systems are 173 
largely in agricultural landscapes outside of LULUCF. The relative carbon stocking is also shown, and 174 
although TOF carbon density is lower, the extent is large, and these landscapes are important for 175 
livelihoods and carbon sequestration efforts. 176 

Trees outside forests include a variety of systems that present mitigation opportunities if 177 
included in REDD+ (Table 1). Functionally, they fulfill a range of emission reduction and removal 178 
functions; some help conserve carbon stocks in both biomass and soil organic matter, some 179 
sequester carbon from the atmosphere, and others reduce the pressure on forests by supplying 180 
alternative food, wood, or income sources such as community woodlots for fuelwood-based 181 
energy. All contribute to livelihoods and economic co-benefits, thus being potent approaches 182 
for capturing both mitigation and adaptation benefits at the same time through common 183 
interventions. 184 

As a core element of the Paris Agreement (cf. Article 5), REDD+ has been implemented as a 185 
policy framework for large scale land-based mitigation. National REDD+ participation is 186 
voluntary and a flexible framework for reducing emissions as well as conservation and 187 
sustainable management of carbon stocks. To be consistent with the broader aims of the Paris 188 
Agreement, the REDD framework also includes adaptation and sustainable development 189 
actions, applicable across a range of countries rather than only those with high biomass forests. 190 
Targeting forested land alone will not be sufficient to achieve the blended goal that addresses 191 
mitigation, adaptation, and sustainable development. In this context, the “forgotten” biomass 192 
in REDD that is found in TOFs is a real gap in global actions to combat and adapt to climate 193 
change. A forest-only approach will miss opportunities for climate-smart land-based mitigation 194 
options in non-forest landscapes, where tree-based systems can increase carbon removals 195 
while also supporting nature-based adaptation and development.  196 



 197 

2.3 Forest and Landscape Restoration through Agroforestry and Trees Outside of Forests  198 

At a global scale, agriculture, forestry, and other land uses (AFOLU) account for approximately 199 
one-quarter of global net anthropogenic GHG emissions, mainly from agricultural production 200 
and deforestation (IPCC 2019). The overwhelming majority of global AFOLU-related GHG 201 
emissions come from a large number of developing countries with primarily rural or agricultural 202 
land base. In many of these countries in South Asia the rural landscapes contain scattered trees, 203 
either as remnants from forests and woodlands, or as established trees used that are part of a 204 
livelihood system (Dupar 2019). Many of these rural areas are also the poorest (Mbow et al. 205 
2020). These landscapes with trees outside of forest are important to the international climate 206 
change mitigation policy community because they have great potential to be restored with 207 
tree-based systems such as agroforestry that provide carbon sequestration and livelihood and 208 
income benefits. International climate change policy measures are increasingly seeing TOF as 209 
natural climate solutions, specifically in emerging programs for Forest Landscape Restoration 210 
(FLR) such as AFR100, the African-wide contribution to the Bonn Challenge.  211 

Restoring tree cover in agricultural areas and reforesting degraded land are critical to ensure a 212 
sound natural resource base for development and to reduce emissions. The literature suggests 213 
that several AFOLU approaches offer significant potential for cost-effectively increasing carbon 214 
sequestration and reducing emissions, with a wide range of collateral conservation benefits 215 

Table 1 Examples of TOF systems and their potential contribution to REDD+ 
Types of 

TOF 
Examples Potential for REDD+ 

Small holder 
Plantations 

Linear planting, woodlots, ally planting, 
precious woods, pole woods, fuelwood 
farms 

Increase removals, reduce emission 
by reducing pressure on forests 

Orchards Commodity trees, such as cashew, 
moringa, grewia, palm 

Increasing removals 

Scattered 
Individual 
Trees 

Mango, Shea, Farmer managed 
regeneration, fertilizer trees such as 
Faidherbia, cordyla on farms 

Conserving carbon, increasing 
removals 

Agroforestry 
Complexes 

Shade cropping, intercropping, Taungya Increase removals, reduce 
emissions by reducing pressure on 
forest 

Woodlots 
and 
Protected 
Blocks 

Village forest areas, customary forests, 
sacred groves, fuelwood 

Conserve carbon, increase 
removals, reduce emissions by 
reducing pressure on forests  

Trees in 
Pastoral 
Zones 

Silvopastoral Conserve carbon, increase removals 

Riparian 
Tree Covers 

Gallery forests, buffer forests Conserve carbon 



(Griscom et al. 2017). These include reducing loss of tree-based ecosystems or landscapes; 216 
reforesting and restoring forests and other landscapes with increasing biomass; improving 217 
forest, woodlot, plantation and agroforestry management; reducing the carbon footprint of 218 
food production through agroforestry; enhancing carbon sequestration in soils of croplands; 219 
sustainable intensification to reduce pressure for land use change; diversification of food 220 
systems; and addressing demand for unsustainable commodity production (Leakey 2020). 221 

The utilization of trees on farms provides natural products and direct economic value to land 222 
managers as well as a range of indirect co-benefits, including water retention, increased site 223 
fertility and productivity, animal fodder, domestic energy from fuelwood and charcoal, 224 
biodiversity and more. TOF systems enable small holders to create a diversified portfolio of 225 
products other than annual crops alone, often with significantly higher economic value 226 
compared to annual crops, a claim we can explicitly test using our framework. 227 

Although South Asia is an emerging urbanized, technical, and industrial economy, it is equally 228 
dependent on its natural capital in agriculture, forestry, and other natural resource sectors. 229 
Therefore, ultimately, evidence-based management of natural resources is integral to 230 
development, resilience, and self-reliance in South Asia. Degradation of agricultural, forests, 231 
and other land erodes the resource base, which can profoundly diminish economic 232 
development: it contributes to other environmental impacts and threats to human health, 233 
diminishes water quality and availability of water for human or ecosystem uses, reduces soil 234 
fertility and land productivity, increases species loss, and facilitates the spread of vector-borne 235 
and zoonotic diseases. In all countries of the region, the natural resource base plays an 236 
especially important role in the national economy, so the loss of natural capital can have 237 
particularly significant implications for development as well as global climate and 238 
environmental impact. 239 

3.0 Study Site for a Case Study in India 240 

3.1 Rationale for Analysis of TOF in South Asia.   241 

This study quantitatively examines whether TOF in small holder agriculture landscapes of India 242 
is increasing. India provides an important and representative case study in South Asia, where 243 
we focus our analysis on methods for TOF detection and carbon measurement over landscapes 244 
and regions. India is an excellent place to develop a South Asia case study because of its large 245 
number of small holders and the government of India has long standing formalized 246 
management and policy priorities in small holder TOF systems (Fig.2).  247 

A study by Schnell et al. (2015, 2015b) of TOF data from 6 countries showed a significant 248 
amount of carbon stored in TOF in neighboring Bangladesh, where TOF biomass was more than 249 
twice the total national forest biomass. Zomer et al. (2016) offers a first-order indication of the 250 
importance of this land use transition. They assess the role of trees on agricultural land and 251 
their significance for carbon sequestration at a global level, along with recent change trends. 252 
They report that in 2010, 43% of all agricultural land globally had at least 10% tree cover and 253 
that the area was increasing. Further, they estimated that trees contribute >75% of agricultural 254 
carbon stocks, increasing at somewhat less than 1% per year. Brazil, Indonesia, China and India 255 



had the largest increases in biomass carbon stored on agricultural land. Although carbon 256 
density is much lower in these land systems than, for instance, closed-canopy forests, these 257 
landscapes remain important because they cover significant areas of marginal and climate 258 
change-vulnerable land and are rural areas with high population densities of agriculturally 259 
dependent communities. 260 

 261 

Figure 2. Trees outside of forests in India. Extensive landscapes with TOF occur across India in rural 262 
areas, supporting both carbon stocking and livelihoods, left. Three patterns of TOF in India agriculture 263 
landscapes, scattered, blocked, and linear, right. 264 

3.2 Specific Study Site in a Hot Spot of Tree Cover Increases in Eastern India 265 

Scientific and government reports are calling attention to a new trend in LCLUC in South Asia 266 
where biomass in tree cover is increasing in small holder agricultural landscapes outside 267 
national recorded forest areas (RFA). For instance, India’s recent State of the Forest Report (FSI 268 
2021), reports a national increase in forest area, with most of the increase attributed to TOF 269 
outside the RFA, mostly on individual small-holder’s agricultural land. India estimates in 2017 270 
indicate that the number of stems outside the RFA is as much as half of that in the RFA and 271 
increasing. In the state of Rajasthan for instance, forest cover inside the RFA declined by 103 272 
km2 since 2015, while tree cover outside the RFA increased by 569 km2, resulting in an overall 273 
net increase of 466 km2.  274 

This study examines a specific region in India, where recent reports paint a picture of increasing 275 
TOF in open, semi-arid, predominantly agricultural lands outside of the formal reported forest 276 
areas (RFA). This region includes five large states: Andhra Pradesh, Telangana, Odisha, 277 
Karnataka, and Jharkhand. This region is also the most significant area of drylands in tropical 278 
Asia according to a recent important report in Science (Bastin et al. 2017). This is important 279 
because the region is large, significant to Asia, and includes both open forest and non-forest 280 
land.  281 

Between 2017 and 2019, tree cover within the RFA declined slightly (-330 km2) while tree cover 282 
outside the RFA increased (4,306 km2). The trend has continued, such that between 2019 and 283 
2021 tree cover within the RFA increased 31 km2 while tree cover outside of the RFA increased 284 
1,509 km2 (FSI 2021). The states with the highest increase in tree cover were the focus of this 285 
study: Andhra Pradesh, Odisha, and Telangana. These three states account for more than 60% 286 
of the total increase in tree cover in the last decade (GoI 2021). Compared to total forest cover 287 



increases of 1,540 km2 the increase in tree cover (TOF) was 721 km2, but this estimate is 288 
somewhat uncertain because it includes considerable scattered individual trees, for which an 289 
area measurement may not adequately apply. It is important to begin measuring total canopy 290 
cover, and number of stems, but these estimates are not reported.  291 

For the entire region of analysis we analyzed TOF mapping using Sentinel-2 data, while we 292 
provided a detailed analysis of TOF mapping using very high resolution data for a large sub-293 
geographical landscape in Odisha. 294 

4.0 New Methods for Direct Measurement of Trees Outside of Forests 295 

4.1 Multi-Sensor Approaches Support Policy Requirements.  296 

The international agreements arising from the 2015 Paris Conference of the Parties to the 297 
United Nations Framework Convention on Climate Change have brought forests into the 298 
framework for mitigation of GHG emissions. The Paris Agreements also address the role of 299 
forestry and agriculture in climate change adaptation. Forests, particularly closed tropical 300 
forest, have long been the focal point for land cover change monitoring and considerable 301 
progress has been made developing measurement and monitoring tools for these forest 302 
ecosystems (Hansen et al. 2013, Harris et al. 2021). Thus, most of the immediate international 303 
emphasis has been on developing robust measurements, reporting and verification (MRV) 304 
capacities for forests.  305 

What has been missing until recently, is an equally aggressive technical development of 306 
methods for large scale measurements of TOF.  To be included in climate change mitigation 307 
policy frameworks, new MRV capabilities are needed for four TOF feature-types: (1) trees in 308 
various configurations outside of forests in agricultural landscapes, (2) agroforestry systems 309 
specifically managed to combine perennial trees with annual crops, (3) tree plantations that 310 
have been planted for restoration or also commercial purpose, and  (4) other isolated trees 311 
with low cover density not considered as forest or woodland, such as in urban areas. The most 312 
important application of TOF measurements is for landscape-wide mapping of Activity Data and 313 
Emissions Factors for National Forest Monitoring Systems (NFMS) supporting REDD+ program 314 
requirements. Most national inventories of the forest estate do not include trees outside 315 
forests, and thus national accounting is missing a substantial part of the woody resources of a 316 
country. In one example from a national assessment of all trees in Rwanda, it was found that 317 
72% of the total tree cover and 50% of the national carbon stocks were in TOF 318 
(Mugabowindekwe et al. 2023).  319 

Very high resolution large-area measurement capabilities are emerging across a wide spectrum 320 
of remote sensing platforms from medium resolution (10m, Sentinel-2) to high (3 m, Planet) 321 
and very high resolution (<1m, Worldview) products (Brandt et al. 2020, Beckschäfer et al. 322 
2017, Schnell et al. 2015). Using medium resolution data from Landsat, Potapov et al. (33) 323 
showed how a continuous fields method could map increases in TOF cover, while forest cover 324 
was declining in Asia. A recent analysis (Skole et al. 2021) measured tree cover change in the 325 
African sparce woodlands, focusing on tree cover loss in TOF areas (customary forests, 326 
woodlots, village forest areas) using a spectral mixing model with Landsat data. We 327 



demonstrate in this paper how Sentinel-2 medium resolution data can detect TOF tree cover in 328 
India. These studies demonstrate that traditional medium satellite systems, which are locally 329 
calibrated, are generally capable of tracking tree cover changes of clusters of trees not forming 330 
forests.  However, subpixel analysis of isolated individual trees continues to be challenging, and 331 
at medium resolution single trees remain hidden or are difficult to distinguish from the spectral 332 
signal of other vegetation types (Fig. 3). 333 

 334 

Figure 3. Invisible trees. The same area is shown for Sentinel-2 (10 m), top, and Maxar (0.5 m), bottom. 335 
Isolated trees which are challenging to distinguish from other vegetation types at 10 m are clearly visible 336 
at 0.5 m. Large landscape-wide data acquisition is available at 0.5m resolution, and can be processed 337 
with deep machine learning to extract allometric parameters at the individual tree level. Tree-level 338 
allometric scaling makes routine use standard local equations and inventory methods available to 339 
almost all countries’ national programs. The area is an agroforestry landscape in India.   340 

Use of VHR data has a long history of visual interpretation methods (Samasse et al. 2018, 341 
Kundhlande et al. 2017, Cotillon and Mathis 2017, Tappan et al. 2000), but these methods are 342 
often subjective and difficult to scale for larger areas. Recently, deep learning has emerged as a 343 
disruptive technology in different fields of object detection and is also increasingly used for 344 
analysis of satellite imagery. The principal of deep learning is that manual training teaches the 345 
artificial intelligence algorithm parameters that define the shape of a tree, which can then be 346 
automatically identified and mapped over millions of km² . Brandt et al. (2020) have 347 



demonstrated this approach by mapping the crown sizes of 1.8 billion isolated trees across 1.3 x 348 
106 km2 of the West African Sahara and Sahel. That study reported an unexpected high density 349 
of non-forest trees (13.4 trees per ha) in landscapes which had been considered pure desert or 350 
severely degraded. While the applied satellite images from Maxar at sub-meter resolution are 351 
relatively expensive, new micro-satellite constellations (e.g., from Planet Labs) provide cost 352 
efficient alternatives for mapping trees outside forests at unprecedented accuracy (Fig 3). 353 

In the next sections, we present the results of new analyses of TOF using multi-scale satellite 354 
remote sensing data and machine learning processing. The examples demonstrate capacities 355 
for medium resolution data from Sentinel-2, which is capable of detecting both forests and TOF 356 
tree cover,  compared to very high resolution data from MAXAR, which is capable of mapping 357 
individual tree crowns in TOF landscapes. The examples also present a new and novel approach 358 
to mapping individual tree carbon using combined satellite crown mapping and ground 359 
measurements to calibrate an allometric scaling model. 360 

4.2 Method for Analysis of TOF Using Medium Resolution Data 361 

We can generate maps of tree cover at 10m resolution for the entire state of Odisha in India 362 
using a machine learning algorithm and Sentinel-2 VNIR level 2 data. The 10m product is used 363 
to map forest tree cover and TOF areas. The machine learning framework produces an output 364 
layer of “hot pixels” that contain a measurable amount of TOF cover, along with its percent 365 
probability estimate produced by the machine learning model.  366 

4.2.1 Data Preprocessing. We generated analysis-ready data from a Google Earth Engine 367 
Python API using applied to dataset available through the Google Earth Engine Sentinel-2 data 368 
catalog. We created cloud-free mosaics of Sentinel-2 imagery for the year 2022. We utilized the 369 
10m resolution bands from the Sentinel-2 imagery. We split this data collection into large tiles 370 
of 189 x 189 km with the Google Earth Engine Export option. To produce a cloud-free dataset, 371 
we first produce a 12-month time series of images for the year 2022. To prepare this, all 372 
Sentinel-2 images with less than 30% cloud cover were selected and sorted month-wise. Clouds 373 
and cloud shadow masks were generated for each of the selected images in the full dataset. 374 
These masks were used to generate cloud-free individual images, where cloud gaps were filled 375 
by pixel contributions from the closest date image. For any remaining cloud or cloud shadow 376 
gaps in the monthly products, we filled these by interpolating between the images of the 377 
previous and next month where cloud-free data existed. Each month's median value was 378 
computed for all pixels across all VNIR bands. An annual product was generated from the cloud-379 
free monthly mean products. The products were exported from Google Earth Engine as the 380 
analysis-ready data for use with a trained convolutional neural network. 381 

4.2.2 Training Data Creation. Training sample data and sample areas were identified over large 382 
areas within each state. Samples identified tree cover in 10m resolution pixels using the high-383 
probability data values in the 2020 Tropical Tree Cover data set published by WRI (Brandt et al. 384 
2023). Each sample label pixel within a sample area was coded. The extent of samples and large 385 
areas enabled us to create a generalizable machine-learning model for mapping tree cover at 386 
10 meters across a diverse landscape at the state scale. The sample labels and areas were 387 



organized into 256 x 256-pixel subsets and combined with collocated Sentinel-2 VNIR data 388 
created through the preprocessing steps.  389 

4.2.3 Model Training. Sentinel-2 VNIR training sample data and labels are used as input to a 390 
deep neural network-based framework based on U-Net architecture. The U-Net is a fully 391 
convolutional network. The network consists of a contracting path and an expansive path, 392 
which gives it the u-shaped architecture. U-Net consists of an encoder for downsampling and a 393 
decoder for upsampling with skip connections. We made a model containing 31,110,497 394 
trainable parameters. 395 

Our model consists of a contracting encoder path to capture context and a symmetric 396 
expanding decoder path that enables precise localization. The encoder contains repeated 397 
application of two core operations: a conv block and max pooling downsampling. Each conv 398 
block consists of two 3 x 3 conv layers, each followed by BatchNorm and ReLU activation. The 399 
max pooling halves the spatial dimensions after each block. There are 5 encoder blocks, with a 400 
number of filters starting at 32 and doubling after each block. The decoder pathway mirrors the 401 
encoder, with corresponding conv blocks and upsampling instead of downsampling. Skip 402 
connections from the encoder blocks are concatenated to the decoder blocks to provide 403 
localization information. The bottleneck consists of a conv block between the encoder and 404 
decoder paths. The output layer is a 1 x 1 conv layer with sigmoid activation for pixel-wise 405 
prediction. Our model architecture takes 2560m x 2560m, 10m, annual cloud-free Sentinel-2 406 
true color bands. The model was trained for 100 epochs with Adam optimizer using TensorFlow 407 
2.14.0 and Nvidia T4 GPUs with a batch size of 16 on Google Colab.  408 

4.3.4. Data Prediction. The application of the pre-trained deep neural network model is 409 
completed on 256 x 256 10-meter pixels data tiles of three bands of preprocessed Sentinel-2 410 
VNIR data.  Each data tile is padded with values of 0 for processing and then unpadded for a 411 
final product. This reduces prediction errors at the tile edges. Processed tiles are mosaiced and 412 
clipped to the state boundary. 413 

The model output predicts the presence of tree cover in each 10-m pixel area.  The model 414 
output is a map of probability values from 0 – 100 for the presence of tree cover.  We use a 415 
threshold of probability greater than or equal to 40 to determine tree cover extent. To map 416 
areas of forest and non-forest, we aggregate the 10-m tree cover product to 70 x 70m (0.49 ha). 417 
All 70 x 70m grid cells with 10m pixels greater than or equal to a model probability of 70 are 418 
mapped as Forest Areas.  All other 70 x 70m grid cells are Non-Forest Areas.  Within the non-419 
forest areas we then map all 10-m tree cover pixels the meet the >= 40 probability threshold as 420 
TOF. 421 

4.4 Method for Analysis of TOF Using Very High Resolution Data 422 

An individual tree crown TOF dataset was generated employing a machine-learning model 423 
trained on Very-High Resolution (VHR) Images obtained through NASA’s Commercial Smallsat 424 
Data Acquisition (CSDA) program. This initiative, spearheaded by NASA’s Earth Science Division 425 
(ESD), aims to identify, assess, and procure commercial small-satellite (smallsat) data that aligns 426 
with NASA’s Earth science research and application objectives. The initial VHR images had a 2m 427 



spatial resolution, but was subsequently pan-sharpened to 0.5 meters. Training labels for the 428 
model were crafted by manually delineating polygons of individual tree location and crown 429 
polygon.  430 

4.4.1 Data Preprocessing. The high-resolution images were sourced from various satellites 431 
participating in the Commercial Smallsat Data Acquisition (CSDA) program. Predominantly, data 432 
was obtained from MAXAR satellites, specifically WorldView-2, WorldView-3, and GeoEye-1. 433 
These satellites offered images with resolutions ranging from 1.5 meters to 2 meters. To initiate 434 
the preprocessing, we prioritize selecting images with optimal visibility, minimizing cloud cover. 435 
Upon procurement, the next step involves ortho-rectifying the data. Ortho-rectification 436 
eliminates distortions caused by sensor tilt and topographic relief, ensuring each point on the 437 
images is accurately represented as if captured directly below the sensor.  438 

Following ortho-rectification, we subset the bands to Near Infrared (NIR), Red, and Green 439 
bands. This selection is driven by substantial variation in chlorophyll exhibited by the NIR band, 440 
with the Red and Green bands providing complementary information. The Blue band is omitted 441 
due to its tendency to introduce noise in the form of haze uncertainty. 442 

The subsequent step involves pan-sharpening the image. Pan-sharpening combines high-443 
resolution details from a panchromatic band with lower-resolution color information from 444 
other bands, typically visible bands. We employ the NNDiffuse Pan Sharpening algorithm, 445 
utilizing nearest neighbor diffusion. This process enhances the spatial resolution of 446 
multispectral images by diffusing higher-resolution information from the panchromatic image. 447 
The algorithm leverages nearest-neighbor relationships to seamlessly blend details from the 448 
panchromatic image into corresponding multispectral bands, resulting in a pan-sharpened 449 
image characterized by improved clarity and detail. At this stage, we have an ortho-rectified, 450 
pan-sharpened image with NIR, Red, and Green bands.  451 

4.4.2 Training Data Creation. The generation of our training dataset involves a manual process 452 
where training labels are meticulously crafted by outlining polygons around individual tree 453 
crowns. To ensure the model’s generalization across diverse landscapes within the target area, 454 
we initiate the process by selecting a 200-meter x 200-meter sample area. This strategic 455 
selection encompasses various land types, aiming to create a model capable of addressing the 456 
complexities of the intended application area. 457 

Within this chosen sample area, polygons are drawn around trees found in different settings 458 
such as villages, farmlands, and forests. The assessment of the appropriateness of these 459 
polygons, and their accuracy, is conducted using Very-High-Resolution (VHR) data as a backdrop 460 
in ArcGIS. This meticulous validation process ensures the quality and precision of the training 461 
labels. Subsequently, the sample area and corresponding sample label bands are stacked onto 462 
our preprocessed image. This results in an image containing five bands: ortho-rectified and pan-463 
sharpened Near Infrared (NIR), ortho-rectified and pan-sharpened Red, ortho-rectified and pan-464 
sharpened Green, Sample Areas, and Sample Labels. 465 

The next step involves breaking down each dataset into smaller samples of dimensions 128 466 
pixels x 128 pixels. These smaller samples consist of three-band images as features, 467 



accompanied by manually drawn polygons serving as labels. To enhance the robustness of the 468 
training dataset, any features or labels with null or none values are systematically removed 469 
from the training samples. This meticulous process of training dataset creation ensures that the 470 
model is equipped with comprehensive and accurate information, facilitating effective learning 471 
and application across diverse landscapes within the specified target area.  472 

4.4.3 Model Training. The training process involved generating a probability prediction for tree 473 
extent using a model trained with ortho-rectified, pan-sharpened images as features and 474 
manually drawn polygons as labels. The chosen deep learning model is the Residual Network 475 
(ResNet), a framework specifically designed to facilitate the training of networks with greater 476 
depth than previously employed models. 477 

In the realm of deep learning, the use of more layers in neural networks is intended to reduce 478 
error rates. However, as the number of layers increases, a common challenge known as the 479 
Vanishing or Exploding gradient emerges. This issue causes the gradient to either diminish 480 
significantly or become excessively large, resulting in increased training and test error rates. 481 
ResNet mitigates this problem through the incorporation of skip connections, a technique 482 
proposed by He et al. (2016). The specific ResNet model chosen for this machine-learning 483 
application is ResNet-50, characterized by 50 layers, encompassing both convolutional and fully 484 
connected layers. The model architecture processes 64-meter x 64-meter VHR images with a 485 
resolution of 0.5 meters. The training was conducted on an AMD 20 GPU provided by Michigan 486 
State University’s High-Performance Computing Clusters.  487 
 488 
4.4.4 Model Prediction. Tree prediction and mapping was accomplished using a pre-trained 489 
model tailored for the specified area. The pre-trained model operated on ortho-rectified, pan-490 
sharpened, three-band VHR images which are split into 128 pixels x 128 pixels. Notably, during 491 
the observation phase, it was identified that the pre-trained model tends to generate “fuzzy” 492 
predictions along the borders. To resolve this issue, we employed the application of image 493 
flipping, which entails predicting each tile three times on different axes. The mean of these 494 
flipped predictions was calculated to remove undesired fuzziness around the borders of the 495 
predictions. Following prediction, individual predictions were seamlessly mosaiced and clipped 496 
to conform to the defined boundary areas. 497 
 498 
4.5 Method for Individual Tree Carbon Mapping Using  499 

The preparation of high resolution maps of TOF at the individual tree crown level enables the 500 
preparation of individual tree carbon maps across very large landscapes and geographic areas. 501 
The advantage of having an individual tree crown map is that allometric scaling can be 502 
appropriately used to estimate biomass and carbon. Many approaches to biomass mapping of 503 
tree cover using remote sensing rely on data that is so coarse that generalized tree canopy 504 
cover forms the basis of biomass estimation. Allometric scaling requires the use of an individual 505 
tree structural parameter. Moreover, with individual parameters, there is a wide range of 506 
allometric models (equations) available to account for landscape or tree-type-specific 507 
differences. Even with canopy cover models calibrated against sample plot data, often no finer 508 
resolution than 50m, nonlinearities can introduce error. However, most allometric equations 509 



are based on tree stem diameter or tree height and when using the height structural 510 
parameter, the stem diameter is also required. That presents a problem for remote sensing 511 
because stem diameter cannot be measured with satellite observations. However, we produce 512 
a novel method for allometric scaling in which ground calibration is used to produce an 513 
estimate of stem diameter through a measurement of tree crown diameter or area. Individual 514 
tree Crown Projected Area (CPA) is the primary output of our VHR data machine learning 515 
model.  516 

We used the method described in Skole et al. (2021) and Mugabowindekwe et al. (2023). The 517 
method requires ground collection of tree data in model calibration sites in Odisha. The 518 
sampling scheme was based on having two large model landscapes, one in northern Odisha and 519 
one in southern Odisha, covering approximately 10,000 km2. Within each model landscape, we 520 
identified 10 test sites each of 10km-by-10km square. In each test site, a random selection of 5 521 
1 ha sample plots was made. The number of sample plots was determined by an a priori 522 
estimation of the required number to acquire measurements on 500 trees.  523 

Within a test site plot, we deployed a field inventory to collect individual tree data on crown 524 
areas, standard allometric parameters (cf. diameter at breast height and crown projected area), 525 
species and landscape descriptions, and tree location information co-registered to the tree map 526 
products. A sample frame inventory was deployed using standard operating procedures for 527 
forest carbon inventories (Walker et al. 2012). Allometric measurements from field plots were 528 
used to estimate diameter at breast height (DBH) from crown projected area (CPA) using linear 529 
ordinary least squares regression. The estimated DBH was used as an input parameter in the 530 
standard, local allometric equation to estimate tree biomass. The aim of estimating DBH from 531 
remote sensing, rather than directly estimating carbon, is so our approach is compatible with 532 
national forest inventory practices in the Senegal that routinely use tree and forest inventories 533 
from existing allometric equations.  534 

Using ground-collected data on individual tree stem diameter, tree canopy diameter, and tree 535 
canopy projected area, an ordinary least squares linear regression was estimated from the 536 
field-measured sample tree data. This produces a simple model to estimate DBH from remote 537 
sensing CPA which is produced by the VHR machine-learning model. The estimated DBH was 538 
used with a standard allometric equation based on DBH, in this case using the IPCC default 539 
tropical dry allometric equation. The estimation of stem diameter from crown parameters was 540 
based on an OLS regression of 1,415 sample trees, shown in Figure 4 and Table 2. 541 

 542 

 543 

 544 



 545 

Figure 4. Results from 1 ha field sample plots, which estimate an OLS model to predict tree stem 546 
diameters from remote sensing observations of CPA. 547 

 548 

5.0 Results and Discussion 549 

5.1 Tree Cover with Sentinel-2 10m Data.  550 

With Sentinel-2 data the model predicts tree cover regardless of forest or TOF. To separate 551 
forest and TOF cover areas using the Sentinel-2 processing, we used an aggregate contiguity 552 
analysis based on the widely used definition of a forest as having complete tree cover over a 553 
contiguous area of 0.5 ha. A 70m x 70m grid was overlaid on the Sentinel-2 product, which are 554 
10m resolution pixels that have been predicted by the model to be tree cover areas (to contain 555 
detectable tree cover). Each pixel in the model prediction dataset as a probability estimate is 556 

Table 2. Model equations to estimate stem diameter and tree carbon 
Tree crown diameter, CD (m)  

Estimated DBH, cm DBH = 4.1101 * CD + 9.9407 
Aboveground Biomass, kg AGB = 34.4703 - 8.0671 * D + 0.6589 * D2 
Belowground Biomass, kg BGB = AGB * 0.26 

Whole tree carbon stock, kg C = AGB + BGB 

CD =  2 ∗ �𝐶𝐶𝐶𝐶𝐶𝐶 𝜋𝜋⁄  



attached, and all pixels with >40% are considered to have tree cover (of unknown subpixel 557 
quantity). Our aggregate contiguity test for forest areas examines all pixels within a 70m x 70m 558 
grid cell with a >70% probability. When all pixels meet the test, the grid cell is considered forest 559 
and all model prediction pixels in the grid cell are considered forest pixels. All other model-560 
predicted pixels are non-forest or TOF. The TOF pixels are those not classified as forests with a 561 
probability estimate greater than 40%. The approach results in some minor inclusion or 562 
exclusion errors, but generally along forest edges. 563 

Table 3 presents area estimates of forest tree cover, trees outside of forest cover, and non-564 
treed land cover in the three states of Odisha, Telangana, and Andhra Pradesh, broken into 565 
forest and TOF classes. These states are three of the five major states where the national Forest 566 
Survey of India has reported notable increases in tree cover. In Odisha, there is more tree cover 567 
area in TOF than forest. In Odisha, 43% of the land has no detectable tree cover, while 34% and 568 
23% are areas of TOF and forest, respectively. Inspection of the data for other states shows that 569 
forest cover is greater than TOF cover, but the cover associated with TOF is in all cases 570 
surprisingly large. However, it is important to note cautiously that while the total tree cover 571 
area for forest based on VHR mapping may well reflect actual crown cover areas, the estimates 572 
from Sentinel 10m resolution data consider the entire pixel area and are thus overestimates.  573 

 574 

5.2 Comparison with Official Inventory Estimates. 575 

The mapping using Sentinel-2 data covers three entire states, while the VHR analysis only 576 
covers a large test area. Therefore, we can compare the Sentinel-2 10 m resolution deep 577 
learning model of forest and TOF areas to the latest release of the Indian report on the State of 578 
the Forests (FSI 2021), and these are shown in Table 3. With perhaps one exception for the 579 
state of Andhra Pradesh, it appears that the FSI analysis overestimates forest cover and 580 
underestimates TOF cover compared to our analysis. For Andhra Pradesh the FSI estimates 581 
underestimate forest cover compared to our analysis. Because of definitional differences 582 
between how FSI computes forest cover versus tree cover vs TOF we have combined both the 583 

Table 3. Sen�nel-2 based predic�on of tree cover in Forest and TOF landscapes (km2) 
Indian State Forest  ToF  FSI  

Forest 
FSI  
TOF 

Non-For/No 
ToF  

Total Area  

Odisha 35,130 53,327 52,156 29,474    67,611 156,069 
Telangana 19,688 14,548 21,214    8,214    77,908 112,144 
Andhra 
Pradesh 

37,658 22,121 29,784 14,903 100,345 160,124 

  Forest 
(%) 

ToF 
(%) 

  Non-For/No 
 ToF (%) 

Odisha 23% 34%   43% 
 

Telangana 18% 13%   69% 
 

Andhra 
Pradesh 

24% 14%   63% 
 



FSI tree cover and TOF for our comparison. If one only considers our TOF estimates compared 584 
only to the FSI TOF estimates, we conclude that the official estimates are under reporting the 585 
area in TOF senso stricto by as much as 200-300%.  586 

5.3 Tree Cover with VHR 0.5m Data.  587 

Using VHR data the machine learning model can predict the crown polygon, and hence map the 588 
tree-object and derive precise estimates of individual tree canopies, deriving an allometric 589 
parameter of the crown projected area (CPA). At a spatial resolution of 0.5m, the mapping is 590 
object-based and is a precise estimate of crown cover area, and when summed a precise area 591 
estimate of tree cover (Fig 5). Table 4 presents the results of the VHR analysis for a 5468 km2 592 
test area in Odisha state and a direct comparison with results from Sentinel-2 analysis above. 593 
The total VHR tree cover measured as total tree crown area is 1470 km2, compared to the tree 594 
cover of 2902 km2 from Sentinel-2 analysis, which is a 198% overestimate by Sentinel-2. It is 595 
difficult to directly compare the two sensors’ estimates in a contingency matrix due to pixel 596 
resolution differences. If we examine only the improved accuracy of the VHR model but we 597 
observe that the Sentinel-2 detection of forest results in 125 km2 of co-mission, that is, areas 598 
not detected as any kind of tree cover at all with VHR. The commission error of TOF areas is 599 
1454 km2. In this test landscape, the majority of the tree-cover is in TOF compared to forest. It 600 
is important to note that because the VHR machine learning model is derived at the 0.5 m 601 
resolution, it is a direct measurement of canopy cover on an individual tree basis over the 602 
entire landscape. 603 

 604 

 605 

Figure 5. Results of the VHR data machine learning model, and the crown based allometric scaling 606 
model. The raw VHR data is shown on the right, while the individual tree carbon mapping is shown on 607 
the left with color coding from low carbon (light tones) to high carbon quantities (darker blue tones). 608 

 609 

 610 



 611 

 612 

 613 

 614 

 615 

 616 

5.4 Analysis of Carbon Stocks in TOF Using Tree Crown Allometric Scaling.  617 

We used the VHR mapping product in conjunction with the derived allometric scaling model 618 
from the ground calibration to estimate carbon stocks in TOF trees and trees in forests and for 619 
the landscape as a whole. The VHR model works extremely well in this part of the world with an 620 
abundance of TOF cases. The results are shown in Table 5. The total number of stems in the 621 
study area was 33.93 x 106 including 11.95 x 106 in forest and 57.49 x 106 in TOF. This 622 
proportion of trees in the study site was not the same as in the state of Odisha, so to evaluate 623 
these results in the context of the entire state the forest tree count was doubled. The results 624 
suggest that 48% of all trees are in TOF, which for most inventories has not been evaluated. 625 
This is a relatively large number compared to forests. 626 

Individual tree carbon estimates were based on the allometric equation in Table 2.  Total 627 
carbon in the test area was 9.72 x 106 tC, including 2.58 x 106 in forests and 7.13 x 106 in TOF, 628 
or 73% in TOF areas. To evaluate the carbon representative of the state the forest estimate was 629 
scaled to the proportional distribution between forest and TOF for the state, which results to 630 
suggest that 58% of the carbon is in TOF systems (Fig. 5).  631 

The results clearly show that there is a large proportion of trees in TOF and their contribution to 632 
carbon stocks is also high. The results suggest that while tree counts are higher for forest areas 633 
in total, carbon stocks are higher in TOF areas in total, perhaps as a result of having fewer but 634 
larger trees. Also, although carbon density is almost 3-fold higher in forest land than TOF 635 
landscapes, the considerably larger area of land with TOF results in more carbon. 636 

 637 

 638 

 639 

Table 4. Results of VHR Analysis, Compared to 
Sentinel (km2) 
Detection class Sentinel Model VHR Model 
Forest  571  445 
ToF 2,331 1,025 
No Trees 2,566 3,998 
TOTAL 5,468 5,468 

Table 5. Summary of VHR mapping of individual trees and carbon stocks.  
VHR Data Stems Stems 

Adjusted 
Frac�on tC tC  

ha-1 
tC 

Adjusted 
Frac�on Area 

(ha) 
Study 
Area 

33,934,724 45,889,372 1.00 9,716,135 18 12,298,494 1.00 546,812 

Forest 11,954,648 23,909,296 0.52 2,582,359 45 5,164,718 0.42 57,070 
TOF 21,980,076 21,980,076 0.48 7,133,776 15 7,133,776 0.58 489,742 



5.5 Multi-resolution Observations for Detection, Crown Mapping and Allometric Carbon 640 
Scaling of Individual Trees. 641 

The analysis suggests an approach to mapping TOF where basic allometric scaling can be 642 
applied to estimate carbon stocks across large areas and landscapes at the individual tree level. 643 
Although methods using machine-learning applied to medium resolution data, such as the 10m 644 
Sentinel-2 can be suitable for detection of a wide range of tree clusters and some large 645 
individual trees, they require an alternative approach to estimate carbon because standard 646 
local allometric equations use individual tree parameters. On the other hand, the use of 647 
methods using deep machine-learning with VHR satellite data can be calibrated to produce a 648 
canopy-based allometric scaling model to estimate parameters such as DBH. Thus, the large 649 
area mapping can be combined with standard and local allometric scaling equations suitable for 650 
specific project areas or national carbon inventories. 651 

The results here are consistent with a growing body of literature regarding individual tree 652 
crown mapping using VHR remote sensing (Brandt et al. 2020, Reiner et al. 2023) and 653 
application to carbon stock estimates (Mugabowindekwe et al. 2023). There remain some 654 
important challenges. Most notable is the problem when more than one tree crown overlaps 655 
with a neighboring tree crown, and by extension the mapping of individual trees in forests. This 656 
analysis did detect clusters of TOF trees and attempted to map forests at the tree level. The 657 
approach may be improved by merging a cover-based method for closed canopy mapping, 658 
where carbon stocks are assigned to cover types using Sentinel-2, merged with this VHR 659 
method where carbon stocks are assigned to trees outside of the closed canopy areas. Another 660 
improvement could be made by adding height data, especially if it were derived from the same 661 
VHR data. A good example of this has been reported by Tolan et al. (2024). 662 

This analysis produced different carbon stocks and carbon densities for individual trees and 663 
clusters of trees growing together, including patches that might be considered under the 664 
definition of forests. Generally, the open grown individual trees have higher carbon stocks. This 665 
could be accurate and reasonable as a result of farmer promotion or management of these 666 
trees, where large trees are protected particularly for their size and stature as production trees 667 
or for other utility, while clusters of trees tend to be open canopy natural or remnant trees 668 
which include understories. Further, there is some evidence that across these landscapes large 669 
individual trees are being harvested preferentially (Brandt et al. 2023).  However, the method 670 
we use for assigning carbon stocks to clusters of trees could bias the result toward mean values, 671 
which would be lower than the open grown individual trees which could represent maximum 672 
sizes in the overall size class distribution.   673 

6.0 Conclusions. 674 

6.1 Application to Policy Needs for Monitoring.  675 

The conventional wisdom for more than two decades has been to see LCLUC in Asia through a 676 
lens of agricultural expansion and concomitant loss of natural ecosystems. Moreover, land 677 
degradation is viewed as a dominant characteristic of agricultural land use in Asia. Arguably this 678 
model has been important and relevant to understanding global climate change and the carbon 679 



cycle as well as other global-scale land science processes. However, when viewed against this 680 
backdrop we often overlook how significant an increase in tree cover in small holder 681 
agricultural landscapes is to our understanding of carbon sequestration, drivers of LCLUC, and 682 
the needs of policy and development communities. The TOF question is central to 683 
understanding where and how natural ecosystem conversion trends and land degradation are 684 
being, or can be, reversed – with significant benefits to small-holders’ livelihoods and their land 685 
productivity. 686 

Heretofore it has been difficult to bring measurement and monitoring of TOF landscapes into 687 
the policy setting due to a lack of methods and tools. Indeed, there have been very few 688 
examples of TOF estimates of carbon over large landscapes, or with enough spatial resolution 689 
to meet carbon project requirements. The results of this analysis in India suggest that it is 690 
possible to deploy monitoring of TOF carbon to support REDD+ programs and projects, as well 691 
as forest and landscape restoration actions, such as the Bonn Challenge or AFR100. The 692 
significance of having measurement and monitoring capabilities for TOF lies in its utility for 693 
measuring carbon sequestration and doing so in rural landscapes that are important to 694 
livelihoods.   695 

6.2 An Argument for Increased Consideration of Trees Outside Forests.  696 

The World Agroforestry Center often notes that the “future of trees is on farms”. This 697 
catchphrase reflects that while forests worldwide are being converted and degraded, tree cover 698 
outside of forests may be increasing at a rapid pace, especially in developing countries and in 699 
semi-arid agricultural landscapes. It also reflects the growing expert opinion that there are 700 
more opportunities for planting trees in non-forested areas than in dense tree cover areas. 701 
Further, the number of trees that can be planted on agricultural land without compromising 702 
food security is very high, especially when integrated with the farming system.  703 

South Asian agricultural landscapes are traditionally known for their use of tree systems to 704 
capture a range of ecosystem functions and as a source of food, fiber, and energy. Many of the 705 
farming practices in South Asia are tree-based systems that combine trees with land 706 
management practices for food and animal production. Across India, tree-based systems have 707 
proven suitable for smallholder farmers and low-income households, because the range of 708 
practices offer a source of livelihoods and a basis for local economies (Nair 1993).  In India, 709 
various forms of agroforestry have developed across a range of environmental, social, and 710 
economic contexts, resulting in a diversity of types Mbow et al. 2020, Mbow et al. 2014) 711 

In contrast to forests, areas of non-forest tree cover are often not included in the national 712 
assessments of tree resources, even if the cover density is high. Consequently, data about this 713 
carbon resource are rare, and information that is available is typically fragmented across the 714 
range of institutions and stakeholders that deal with one or more of the various TOF types. For 715 
example, smallholder plantations, woodlots, and agroforestry often align with separate national 716 
agencies or institutions for forestry, energy, and agriculture, respectively. National climate 717 
change mitigation and adaptation programs often focus on forests without considering the 718 
impact of TOF carbon sequestration or their co-benefits related to land productivity and 719 
biodiversity.  720 



A global survey (Zomer et al. 2016) found that in 2010 almost half of all agricultural land had 721 
considerable tree cover and that the area was increasing. This analysis suggests that from 722 
global tree cover in agricultural land was 10% or perhaps higher, and from 2000 to 2010, there 723 
was a 2% increase. These systems could constitute an extremely large area of tree cover that is 724 
additional to what is formally classified as ‘forest’. Although the biomass density is low 725 
compared to forests, the large area and increasing stocks make these places quantitatively 726 
important for carbon sequestration. An important study across three continents of TOF data 727 
from 6 countries (Schnell et al. 2015) showed a significant amount of carbon stored in TOF 728 
systems. Trees may contribute >75% of agricultural carbon stocks and are increasing at 1% per 729 
year, which on a global basis may be storing an additional 740 Mg CO2 per year (Zomer et al. 730 
2016).  731 

6.3 Rethinking the REDD Framework in a Broader Context.  732 

Currently, REDD+ is formulated mainly around the LULUCF framework, which is limited to the 733 
application of REDD within forests (Figure 1) and international attention is beginning to re-focus 734 
on reducing emissions from deforestation in closed canopy tropical forests, such as the new 735 
initiative for Architecture for REDD+ Transactions (ART/TREES), and emphasizes avoided 736 
emissions in high carbon density closed forest ecosystems. We argue that there is an urgent 737 
need for climate change mitigation actions that are applied across a range of landscapes, 738 
including more than these high carbon density forests, and include carbon removals. 739 
Furthermore, with increasing interest in linking climate change mitigation and adaptation, 740 
policies and measures are needed that have direct social, economic and livelihood co-benefits. 741 
Bringing a strong TOF focus into REDD+ would expand the framework to landscapes that cover 742 
extensive areas in Africa, having the potential for generating large atmospheric removals while 743 
also directly contributing to adaptation measures and livelihood enhancements. This strategy 744 
would increase the number of participating countries beyond those with high carbon density 745 
forests, including those many countries in Africa with relatively low forest emissions. More than 746 
half of South Asian countries have expressed interest in agroforestry as part of their REDD+ 747 
strategies (Minang et al. 2014). Furthermore, evidence suggests that many farmers already 748 
manage for and promote TOF, so there is a ready link to scale through activities that leverage 749 
traditional knowledge. There is a compelling case to expand the current framework to one 750 
centered on AFOLU, agriculture, forestry, and other land uses.  751 

Many countries include removals-based actions involving TOF in their reporting on Nationally 752 
Determined Contributions. LULUCF and agriculture mitigation targets are included in 73% of all 753 
NDCs submitted so far (UNFCCC 2021), which surpasses all other priority areas including in the 754 
energy sector. Countries with LULUCF actions are more likely to favor removals-based activities 755 
over avoided emissions, with reforestation and agroforestry being identified in more than 50% 756 
of all domestic LULUCF and agriculture mitigation activities. Yet, strictly speaking, REDD+ and 757 
NDC reporting are different components of the international agreements under UNFCCC. Thus, 758 
an expanded AFOLU approach brings NDC and REDD+ closer together programmatically and 759 
would improve the coordination between the forestry and agriculture sectors in national 760 
programs. It would also improve cross-agency and inter-institutional coordination of mitigation 761 
and adaptation programs.    762 



Important initiatives such as the Bonn Challenge recognize the value of forest landscape 763 
restoration to climate change mitigation and adaptation. It also highlights the importance of 764 
removals, even in ecosystems and landscapes that have low carbon densities. New calls for 765 
increasing investments and actions with tree-based systems are being registered. New technical 766 
concepts such as multifunctional agriculture (Leakey 2017), land-maxing (Leakey 2020) 767 
multifunctional landscapes (Mbow et al. 2021, Cockburn et al. 2019) and farmer-managed 768 
natural regeneration (Lohbeck et al. 2020) are promoted in the peer literature, alongside 769 
increasing evidence that farmers promote these systems if barriers are removed or there are 770 
strong pathways to capture the ecosystem services values. At the same time, new 771 
measurement methods using earth observing systems are quickly being deployed. These new 772 
monitoring tools have capabilities to measure fine resolution objects at the scale of individual 773 
trees, while simultaneously being applied across expansive geographic extent. These 774 
measurement and monitoring tools have opened a window of opportunity to expand the 775 
existing REDD+ framework to include trees outside of forests, which in turn can create the 776 
enabling environment for large-scale climate-smart investments in natural climate solutions. 777 

6.4 Nature-Based Components of Net-Zero Goals.  778 

Effective emissions reductions are at the core of organizational responses to climate change 779 
through direct emissions abatement. Most financial institutions (FI) have started to focus on 780 
net-zero as the guiding concept for climate mitigation. However, a lack of consistent principles, 781 
definitions, metrics, and evidence of effective strategies to meet net-zero targets limits the 782 
ability of FIs to support the reduction of emissions in the real economy that is needed to 783 
stabilize temperatures at 1.5°C above pre-industrial levels. There are two basic fundamentals 784 
underlying net-zero goals:  785 

1) Set science-based goals and targets that are aimed at reducing emissions to mitigate a 786 
1.5o C rise in global temperatures by selecting pathways without overshoot that 787 
primarily focus on emission abatements. 788 

2) Residual emissions can be neutralized by implementing or financing activities that 789 
permanently remove an equivalent amount of atmospheric carbon, which can be NBS 790 
activities. 791 

 792 
The salient points are threefold. First, there is widespread agreement that full zero emissions 793 
targets are not likely to be realistic if adhering to a pathway that achieves global temperature 794 
mitigation soon and without overshooting at scale under realistic cost. Second, the best, if not 795 
the only, strategy for immediate and complementary removals is through NBS, principally tree-796 
based NBS, because other NBS (of NCS) are future-focused avoided emissions. Third, to achieve 797 
permanence, or best ensure maximum likelihood for permanence, activities systems would be 798 
tied closely to livelihoods and other economic or income valuations and sustainability, in which 799 
most NBS activities are situated along with multiple co-benefits (cf. biodiversity). 800 
 801 
Current thinking on how to implement net-zero in this context stipulates that companies 802 
cannot purchase carbon credits as a replacement for actual emissions reductions through the 803 
value chain, i.e. offsetting emissions. However, activities or investments outside the value chain 804 



are recommended to support societal net-zero goals and to address residual emissions through 805 
evidence-based NBS-carbon activities. To do this, it is necessary to know what activities are real 806 
and impactful, and how to measure and report against disclosures or goals. 807 

6.5 From Net Zero to Disclosure.  808 

While the net-zero framework is guiding progressive and voluntary business strategies for firms, 809 
regulations are also evolving quickly in North America, Europe, and Asia. While some of the 810 
new or proposed rules and regulations have a singular focus on climate change issues, others 811 
address sustainability more broadly. For instance, the US Securities and Exchange Commission 812 
is set to finalize new rules for climate disclosures that, as proposed, focus on the oversight of 813 
climate-related risks, the financial impacts of severe weather events and greenhouse gas 814 
emissions.  815 

For investors who have committed to supporting the goal of net zero emissions by 2050 or 816 
sooner by joining the Net Zero Asset Managers Initiative, the Paris-aligned Investor Asset 817 
Owner Commitment, and the Net Zero Asset Owners Alliance, this draft rule is absolutely 818 
critical. Without clear and comparable climate disclosures from companies, investors cannot 819 
evaluate climate risks for individual holdings or make plans to address the systemic risks of 820 
climate change across their portfolios and the real economy. 821 

The bottleneck will likely be in the NBS-carbon components of reporting because they are more 822 
difficult and not well known to traditional accounting firms or organizations, let alone 823 
participating firms and financial institutions. Thus, measurement, reporting, and verification 824 
using science-based standards, practices, and protocols for carbon in NBS applications needs 825 
rapid development. 826 

6.6 High Integrity Measurements Based on Earth Observations 827 

For mitigation policy to be effective, there will need to be an increased level of climate finance 828 
made available from a range of donors and private sector actors. Although emerging initiatives 829 
such as LEAF Coalition are mobilizing public funds for NbS actions in the REDD+ space, it has 830 
become clear to many observers that it will not be enough. Private sector financing will also be 831 
required, but before that happens at a global scale, investors are increasingly needing high 832 
integrity measurements. Although ground-based measurements will be needed, the 833 
deployment of new precision and global scale measurements will need to come from Earth 834 
Observations. The kinds of results demonstrated in this study suggest that increasingly large 835 
area assessments of carbon stocks and stock changes with very high resolution consistent with 836 
the use of allometric scaling and NbS types of systems will be possible. Twining the technical 837 
means for measurement from the science community with new-standard setting initiatives 838 
such as the Integrity Council for Voluntary Carbon Markets (ICVCM) and the Voluntary Carbon 839 
Markets Integrity Initiative (VCMI) by leveraging programs such as the Global Observations of 840 
Forest Cover (GOFC) program will increase confidence and raise the level of discussion from 841 
carbon literacy to carbon intelligence.     842 

 843 



7.0 Acknowledgements 844 

This work is a part of the South/Southeast Asia Research Initiative (SARI) funded by the NASA 845 
Land Cover/Land Use Change Program. We wish to acknowledge the IORA team which 846 
collaborated with the project to collect model calibration data and carbon allometric model 847 
data in the field, and to Katie James at MSU for supervising the international collaboration 848 
contracts and grant management. 849 

8.0 References 850 

Akinyemi, F.O., Ghazaryan, G. and Dubovyk, O., 2021. Assessing UN indicators of land 851 
degradation neutrality and proportion of degraded land for Botswana using remote sensing 852 
based national level metrics. Land Degradation & Development, 32(1), pp.158-172. 853 

Beckschäfer, P., Schnell, S. and Kleinn, C., 2017. Monitoring and assessment of trees outside 854 
forests (TOF). In Agroforestry (pp. 137-161). Springer, Singapore. 855 

Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O., Allen, M. and 856 
Hall, J.W., 2021. Operationalizing the net-negative carbon economy. Nature, 596(7872), pp.377-857 
383.  858 

Brandt, M., Gominski, D., Reiner, F., Kariryaa, A., Guthula, V., Ciais, P., Tong, X., Zhang, W., 859 
Govindarajulu, D., Ortiz-Gonzalo, D. and Fensholt, R., 2023. Severe decline in large agroforestry 860 
trees in India over the past decade.  861 

Brandt, M., Tucker, C.J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, 862 
L.V., Hiernaux, P., Diouf, A.A. and Kergoat, L., 2020. An unexpectedly large count of trees in the 863 
West African Sahara and Sahel. Nature, 587(7832), pp.78-82. 864 

Buck, H.J., Carton, W., Lund, J.F. and Markusson, N., 2023. Why residual emissions matter right 865 
now. Nature Climate Change, 13(4), pp.351-358.  866 

Chomba, S.; Sinclair, F.; Savadogo, P.; Bourne, M.; Lohbeck, M. 2020. Opportunities and 867 
Constraints for Using Farmer Managed Natural Regeneration for Land Restoration in Sub-868 
Saharan Africa. Front. For. Glob. Chang., 3, 122 869 

Cockburn, J., G. Cundill, S. Shackleton, M. Rouget, M. Zwinkels, S. Cornelius, L. Metcalfe, and D. 870 
van den Broeck. 2019. Collaborative stewardship in multifunctional landscapes: toward 871 
relational, pluralistic approaches. Ecology and Society 24(4):32. 872 

Cotillon, S.E. and Mathis, M.L., 2017. Mapping land cover through time with the Rapid Land 873 
Cover Mapper—Documentation and user manual (No. 2017-1012). US Geological Survey. 874 

Dupar, M., 2019. IPCC’s special report on climate change and land: what’s in it for South Asia? 875 
Climate and Development Knowledge Network.  876 



FSI, 2021. State of the Forest Report 2021, Forest Survey of India, Dehradun, Uttarakhand, 877 
India. 878 

Fuss, S., Canadell, J.G., Ciais, P., Jackson, R.B., Jones, C.D., Lyngfelt, A., Peters, G.P. and Van 879 
Vuuren, D.P., 2020. Moving toward net-zero emissions requires new alliances for carbon 880 
dioxide removal. One Earth, 3(2), pp.145-149.  881 

GoI 2019. India State of the Forest Report 2019, Forest Survey of India,  Ministry of 882 
Environment, Forest and Climate Change, Dehradun.   883 

Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., 884 
Shoch, D., Siikamäki, J.V., Smith, P. and Woodbury, P., 2017. Natural climate 885 
solutions. Proceedings of the National Academy of Sciences, 114(44), pp.11645-11650. 886 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., 887 
Stehman, S.V., Goetz, S.J., Loveland, T.R. and Kommareddy, A., 2013. High-resolution global 888 
maps of 21st-century forest cover change. Science, 342(6160), pp.850-853. 889 

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., De Bruin, S., Farina, M., Fatoyinbo, L., Hansen, 890 
M.C., Herold, M., Houghton, R.A. and Potapov, P.V., 2021. Global maps of twenty-first century 891 
forest carbon fluxes. Nature Climate Change, 11(3), pp.234-240. 892 

IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, 893 
land degradation, sustainable land management, food security, and greenhouse gas fluxes in 894 
terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. 895 
Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. 896 
Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. 897 
Belkacemi, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 898 
USA, 896 pp. https://doi.org/ 10.1017/9781009157988.  899 

Kundhlande, G., Winterbottom, R., Nyoka, B.I., Reytar, K., Ha, K. and Behr, D.C., 2017. Taking to 900 
scale tree-based systems that enhance food security, improve resilience to climate change, and 901 
sequester carbon in Malawi. PROFOR, Washington, DC. 902 

Leakey, R., 2017. Multifunctional agriculture: Achieving sustainable development in Africa. 903 
Academic Press. 904 

Leakey, R.R., 2020. A re-boot of tropical agriculture benefits food production, rural economies, 905 
health, social justice and the environment. Nature Food, 1(5), pp.260-265. 906 

Lohbeck, M., Albers, P., Boels, L.E., Bongers, F., Morel, S., Sinclair, F., Takoutsing, B., Vågen, 907 
T.G., Winowiecki, L.A. and Smith-Dumont, E., 2020. Drivers of farmer-managed natural 908 
regeneration in the Sahel. Lessons for restoration. Scientific reports, 10(1), pp.1-11. 909 



Melo, F.P., Parry, L., Brancalion, P.H., Pinto, S.R., Freitas, J., Manhães, A.P., Meli, P., Ganade, G. 910 
and Chazdon, R.L., 2021. Adding forests to the water–energy–food nexus. Nature 911 
Sustainability, 4(2), pp.85-92. 912 

Mbow, C., Halle, M., El Fadel, R. and Thiaw, I., 2021. Land resources opportunities for a growing 913 
prosperity in the Sahel. Current Opinion in Environmental Sustainability, 48, pp.85-92. 914 

Mbow, C., Smith, P., Skole, D., Duguma, L. and Bustamante, M., 2014. Achieving mitigation and 915 
adaptation to climate change through sustainable agroforestry practices in Africa. Current 916 
Opinion in Environmental Sustainability, 6, pp.8-14. 917 

Mbow, C., Toensmeier, E., Brandt, M., Skole, D., Dieng, M., Garrity, D., Poulter, B. 2020. 918 
Agroforestry as a solution for multiple climate change challenges in Africa. In Deryng, D. (ed.), 919 
Climate change and agriculture, Burleigh Dodds Science Publishing, Cambridge, UK. 920 

Mbow, C., Verstraete, M.M., Sambou, B., Diaw, A.T. and Neufeldt, H., 2014. Allometric models 921 
for aboveground biomass in dry savanna trees of the Sudan and Sudan–Guinean ecosystems of 922 
Southern Senegal. Journal of Forest Research, 19(3), pp.340-347. 923 

Minang, P.A., Duguma, L.A., Bernard, F., Mertz, O. and van Noordwijk, M., 2014. Prospects for 924 
agroforestry in REDD+ landscapes in Africa. Current opinion in environmental sustainability, 6, 925 
pp.78-82. 926 

Minang, P.A., van Noordwijk, M., Freeman, O.E., Mbow, C., de Leeuw, J. and Catacutan, D. eds., 927 
2015. Climate-smart landscapes: multifunctionality in practice. ASB Partnership for The Tropical 928 
Forest margins. 929 

Mugabowindekwe, M., Brandt, M., Chave, J., Reiner, F., Skole, D.L., Kariryaa, A., Igel, C., 930 
Hiernaux, P., Ciais, P., Mertz, O. and Tong, X., 2023. Nation-wide mapping of tree-level 931 
aboveground carbon stocks in Rwanda. Nature Climate Change, 13(1), pp.91-97.  932 

Nair, P.R., 1993. An introduction to agroforestry. Springer Science & Business Media. 933 

Potapov, P., Siddiqui, B.N., Iqbal, Z., Aziz, T., Zzaman, B., Islam, A., Pickens, A., Talero, Y., 934 
Tyukavina, A., Turubanova, S. and Hansen, M.C., 2017. Comprehensive monitoring of 935 
Bangladesh tree cover inside and outside of forests, 2000–2014. Environmental Research 936 
Letters, 12(10), p.104015. 937 

Reiner, F., Brandt, M., Tong, X., Skole, D., Kariryaa, A., Ciais, P., Davies, A., Hiernaux, P., Chave, 938 
J., Mugabowindekwe, M. and Igel, C., 2023. More than one quarter of Africa’s tree cover is 939 
found outside areas previously classified as forest. Nature Communications, 14(1), p.2258. 940 

Samasse, K., Hanan, N.P., Tappan, G. and Diallo, Y., 2018. Assessing cropland area in West Africa 941 
for agricultural yield analysis. Remote Sensing, 10(11), p.1785. 942 



Schnell, S., Altrell, D., Ståhl, G. and Kleinn, C., 2015. The contribution of trees outside forests to 943 
national tree biomass and carbon stocks—a comparative study across three 944 
continents. Environmental monitoring and assessment, 187(1), pp.1-18. 945 

Schnell, S., Kleinn, C. and Ståhl, G., 2015b. Monitoring trees outside forests: a 946 
review. Environmental monitoring and assessment, 187(9), pp.1-17. 947 

Secretariat, U.N.F.C.C.C., 2021. Nationally determined contributions under the Paris 948 
Agreement-Synthesis report by the secretariat. In Proceedings of the Conference of the Parties 949 
serving as the meeting of the Parties to the Paris Agreement Third session (Vol. 31).  950 

Skole, D.L., Samek, J.H., Mbow, C., Chirwa, M., Ndalowa, D., Tumeo, T., Kachamba, D., Kamoto, 951 
J., Chioza, A. and Kamangadazi, F., 2021. Direct Measurement of Forest Degradation Rates in 952 
Malawi: Toward a National Forest Monitoring System to Support REDD+. Forests, 12(4), p.426. 953 

Smith P., M. Bustamante, H. Ahammad, H. Clark, H. Dong, E. A. Elsiddig, H. Haberl, R. Harper, J. 954 
House, M. Jafari, O. Masera, C. Mbow, N. H. Ravindranath, C. W. Rice, C. Robledo Abad, A. 955 
Romanovskaya, F. Sperling, and F. Tubiello, 2014: Agriculture, Forestry and Other Land Use 956 
(AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working 957 
Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 958 
[Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. 959 
Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. 960 
Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 961 
York, NY, USA. 962 

Tappan, G.G., Hadj, A., Wood, E.C. and Lietzow, R.W., 2000. Use of Argon, Corona, and Landsat 963 
imagery to assess 30 years of land resource changes in west-central Senegal. Photogrammetric 964 
engineering and remote sensing, 66(6), pp.727-736. 965 

Tolan, J., Yang, H.I., Nosarzewski, B., Couairon, G., Vo, H.V., Brandt, J., Spore, J., Majumdar, S., 966 
Haziza, D., Vamaraju, J. and Moutakanni, T., 2024. Very high resolution canopy height maps 967 
from RGB imagery using self-supervised vision transformer and convolutional decoder trained 968 
on aerial lidar. Remote Sensing of Environment, 300, p.113888. 969 

UNFCCC. 2021. Nationally determined contributions under the Paris Agreement Synthesis 970 
Report, Addendum, FCCC/PA/CMA/2021/2/Add.2 971 

Walker, S.M., Pearson, T.R.H., Casarim, F.M., Harris, N., Petrova, S., Grais, A., Swails, E., Netzer, 972 
M., Goslee, K.M. and Brown, S., 2012. Standard Operating Procedures for Terrestrial Carbon 973 
Measurement: Version 2012. Winrock International.  974 

Zomer, R.J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., Van Noordwijk, M. and 975 
Wang, M., 2016. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution 976 
of agroforestry to global and national carbon budgets. Scientific reports, 6(1), pp.1-12. 977 


