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ABSTRACT: The Indian summer monsoon is a highly complex and critical weather system that

directly affects the livelihoods of over a billion people across the Indian subcontinent. Accurate

short-term forecasting remains a major scientific challenge due to the monsoon’s intrinsic nonlin-

earity and its sensitivity to multi-scale drivers, including local land-atmosphere interactions and

large-scale ocean-atmosphere phenomena. In this study, we address the problem of forecasting

daily rainfall across India during the summer months, focusing on both one-day and three-day

lead times. We use Autoformers - deep learning transformer-based architectures designed for

time series forecasting. These are trained on historical gridded precipitation data from the Indian

Meteorological Department (1901–2023) at spatial resolutions of 0.25◦×0.25◦. The models also

incorporate auxiliary meteorological variables from ECMWF’s reanalysis datasets, namely, cloud

cover, humidity, temperature, soil moisture, vorticity, and wind speed. Forecasts are benchmarked

against ECMWF’s High-Resolution Ensemble System (HRES), widely regarded as the most accu-

rate numerical weather predictor. We conduct both nationwide evaluations and localized analyses

for major Indian cities. Our results indicate that transformer-based deep learning models consis-

tently outperform HRES-NWP and other climatological baselines. Specifically, compared to our

model, HRES forecasts exhibit approximately 22% higher error for one-day predictions, and 27%

higher error for three-day forecasts. Persistence-based predictions show a 40% and 69% higher

error for one-day and three-day forecasts, respectively. Moreover, our models demonstrate supe-

rior skill in balancing heavy rainfall detection with false positives. We also find that incorporating

historical data up to 20 days prior significantly reduces forecast error, particularly in landlocked

regions. Our findings suggest that NWP forecasts for the Indian monsoon can be substantially

improved by integrating diverse, high-resolution observational data with carefully designed deep

learning models tailored to monsoon dynamics.
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1. Introduction32

Accurate rainfall prediction in India during monsoons is crucial for a variety of reasons:33

agriculture planning, disaster management, day-to-day transportation planning, and so on.34

Anecdotally, it is well known that numerical weather prediction (NWP) does not perform well in35

the prediction of rainfall for India (Rajeevan 2023). It is also conjectured that during monsoons,36

rainfall data across India have spatial-temporal memory so that information on rainfall early in37

neighboring parts may be useful for future rainfall prediction (Goswami and Xavier 2003). In38

addition, rainfall has been shown to be also affected by a variety of other atmospheric, land, and39

ocean variables, such as temperature, wind, soil moisture, etc. (Prasad and Singh 1988).40

In this paper, we consider daily gridded precipitation data from India Meteorological Department41

(IMD) (Pai et al. 2014) available from 1901–2023, at a spatial resolution of 0.25◦ × 0.25◦1. We42

use this to predict rainfall for all of India, one day and three days in the future. We also use daily43

atmospheric and land data as additional covariates in an attempt to improve our forecasts. We44

compare our performance with operational NWP forecasts from the High-Resolution Integrated45

Forecast System (HRES-IFS) of the European Center for Medium-Range Weather Forecasts46

(ECMWF (2021)). HRES is widely regarded the leading operational weather forecasting system47

in the world (Lam et al. (2023)).48

Several attempts have been made to predict rainfall using machine learning (ML) techniques.49

For long-range forecasting of monsoon rainfall in India, Rajeevan et al. (2000, 2007) used a host50

of methods such as multivariate principal component regression, simple neural networks, linear51

discriminant analysis, ensemble multiple linear regression, and projection pursuit regression.52

They used multimodal data such as air temperature, sea surface temperature, rainfall, air pressure53

etc. These developments helped support IMD’s two-stage monsoon forecasting system with the54

first stage forecast given in mid April and an updated second stage forecast given at the end of55

June.56

More recently, deep learning and machine learning approaches have been explored for short-range57

rainfall prediction. Kumar et al. (2021, 2022) conducted a comparative analysis of Long-Short-58

Term-Memory (LSTM) and ConvLSTM models trained using ground-based IMD rainfall data and59

satellite data for Indian summer monsoon rainfall. They showed correlation coefficients between60

1In the more elaborate arxiv version of the paper, we include comparisons with NCEP-NWP as well. We also conduct comparisons for coarser

1◦ × 1◦ grids and observe similar results.
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the observed and predicted rainfall of 0.67 for 1 day and 0.42 for 2 day lead time, respectively,61

indicating reasonable skill in short-range precipitation forecasting. However, their results also62

highlighted that model efficiency quickly drops after 2 days lead time, pointing to a limitation in63

capturing longer temporal dependencies. Similarly, Praveen et al. (2020) analyzed rainfall trends64

and forecasting using machine learning. They mainly focus on predicting long-term trends. Jose65

et al. (2022) developed ensemble predictions of daily precipitation and temperature using machine66

learning. Their analysis was limited to coarser spatial scales (1◦ resolution). Miao et al. (2019)67

used a combined CNN-LSTM neural network to improve the prediction of monsoon precipitation.68

The last three references relied on reanalysis data for ground truth. Typically, both the NWP69

based prediction models (such as HRES) and machine learning based prediction models, such as70

GraphCast (Lam et al. 2023) and ClimaX (Nguyen et al. 2023), also rely on reanalysis data for71

initialization and, in case of ML models, training. In our work, we instead use the IMD data for72

training, which is shown to be better representative of the ground truth (Kishore et al. 2016).73

Chen et al. (2023) provide a comprehensive survey of machine learning methods in weather and74

climate applications and highlight persistent challenges such as the underprediction of extreme75

rainfall events and the need for better integration with physical models.76

77

Our work adds to the growing literature on the use of ML for short-term rainfall prediction,78

primarily using historical IMD data and benchmarking against NWP forecasts. We compare79

and contrast the deep learning-based forecasts generated by autoformers (Wu et al. 2021) using80

historical rainfall data from IMD (referred to as DL-HD forecasts) and the forecasts generated81

using IMD rainfall data and additional covariates (called DL-HD+Covariates), with the HRES-82

NWP forecasts. In an attempt to arrive at improved forecasts, we also combine the NWP forecasts83

with DL-HD+Covariates using a simple neural network, to generate ensemble forecasts. Much of84

the rainfall in India occurs during the four monsoon months of June, July, August and September85

(JJAS), and hence, to build a more useful forecasting system, we restrict our forecasts to JJAS.86

We find that for forecasting precipitation one and three days into the future, forecasts obtained87

by DL-HD+Covariates are substantially more accurate compared to NWP forecasts as well as88

forecasts based on climatological baselines. We also discuss the improvement in performance89

of our forecasts when they are combined with NWP forecasts. We further observe that using90
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autoformers, data up to 20 days in the past is useful in reducing errors of one and three day91

forecasts.92

2. Data and Experiments93

a. Data Sources94

1. IMD Ground Truth: We use daily gridded precipitation data obtained from IMD spanning95

the period from 1901 to 2023, at a spatial resolution of 0.25◦×0.25◦ (Pai et al. 2014). At this96

resolution, the geographical extent of India is discretized into 12,422 grids. This forms the97

ground truth dataset against which our predictions and other models are compared.98

2. Additional weather variables: Apart from precipitation, we also use daily atmospheric99

and land data at 0.25◦ resolution provided by ECMWF as part of their reanalysis products100

(Copernicus Climate Change Service 2019). These variables include: horizontal and vertical101

components of wind at 10m, temperature, soil moisture, cloud cover, vorticity at 850hPa, hu-102

midity, and divergence at 700hPa. These are the lower tropospheric pressure levels, indicative103

of cloud development and rainfall processes. The data is available from 1950 onwards.104

3. NWP forecasts: We assess performance relative to HRES, a commonly adopted NWP105

benchmark. The HRES daily forecasts are obtained from ECMWF (ECMWF 2021) for all106

years 2011 onwards, at a resolution of 0.25°, for both 1 and 3 days into the future. The dataset107

is downloaded only for the JJAS months.108

b. Dataset Preparation109

We compare the 06:00 UTC daily HRES forecasts for lead times of 1 and 3 days with the110

corresponding deep-learning-based forecasts. All data are aligned to 06:00 IST to ensure proper111

temporal consistency with the ground truth. The HRES data provide cumulative precipitation112

forecasts over 24-hour and 72-hour periods, which are directly comparable to our 1-day and 3-day113

predictions, respectively.114

For DL-HD and DL-HD+Covariates training, the IMD dataset is partitioned into training115

(1901–2011) and test (2012–2023) subsets. Training samples are constructed using a time window116
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approach, where each input consists of rainfall data from all grid points over 3 contiguous days.117

The model is trained to predict the cumulative rainfall for the (3 +1)th day at the same grid points.118

c. Experiments119

Below we outline how forecasts are generated using different models for lead times of 1 and 3120

days.121

1. DL-HD: We generate forecasts for all = grids across India using historical rainfall data from122

IMD, utilizing varying lengths of past information, spanning from 3 to 20 days (3). The input123

dimensions for the models are structured as =× 3, capturing the historical rainfall data for all124

grids over the specified timeframe. The output dimension is =, representing the forecasted125

rainfall for the subsequent day at each grid point.126

This is implemented using the Autoformer architecture, an advanced variant of the Trans-127

former model specifically designed for time series forecasting. Autoformer incorporates two128

core components that make it particularly effective for modeling the complex spatiotemporal129

dynamics of rainfall data:130

(a) Series decomposition: This mechanism decomposes the input time series into trend131

and seasonal components at multiple stages within the model. The trend component132

captures long-term variations in rainfall, while the seasonal component isolates shorter-133

term, repeating fluctuations.134

(b) Auto-correlation mechanism: Replacing the standard self-attention mechanism, Aut-135

oformer employs an auto-correlation approach that identifies repeating patterns over136

different time horizons. This helps capture periodic dependencies and reduces compu-137

tational complexity from quadratic to near-linear in sequence length.138

We train the Autoformer model using data from 1901 to 2011 and generate test forecasts for139

the years 2012 to 2023. More details on the Autoformer architecture we use in our experiments140

is given in Appendix b.141

2. DL-HD + Covariates: This is an extension of the above model where we use past 3 days142

of precipitation data (3 ≤ 3 ≤ 20) from IMD, and past 3 days of reanalysis data. As stated143

earlier, the additional covariates include wind speed, temperature, soil moisture, cloud cover,144
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vorticity, humidity, and divergence. The choice of these variables is justified later in Section145

2e. The number of past days for reanalysis data were fixed to 3 as we did not observe any146

significant reduction in errors when incorporating information beyond 3 days. The input147

dimensions are now structured as =× 3 × E, where E is the number of covariates. The output148

is again =-dimensional, forecasting the rainfall value at each grid.149

3. NWP: HRES daily forecasts are available for lead times of 1 and 3 days. These are compared150

with forecasts made using IMD data.151

4. NWP+: We combine the HRES forecasts at the target grid and the 4 neighbouring grids using152

a deep neural network, which is trained to minimize the error between the forecast and IMD153

ground truth for the particular grid. The resulting forecast is called NWP+ prediction. The154

model here is trained from 2011 to 2020 and test forecasts are generated for 2021 - 2023.155

While using 4 surrounding grids improves the forecasts somewhat, we did not see further156

improvement with a higher number of grids.157

5. Ensemble: We combine the DL-HD + Covariates forecasts, and the HRES forecasts of the 5158

grids, to generate an ensemble forecast for each grid. This is done using a deep neural network.159

The models here are trained from 2011-2020, and forecasts are generated for 2021-2023.160

We also use the following simpler baselines to benchmark our models against:161

1. Persistence: This is a naive forecast which estimates the rainfall on day 3 +1 and the average162

of rainfall in days 3 +1, 3 +2 and 3 +3 as the observed rainfall on day 3 for each grid. This is163

reported for the period 2012-2023.164

2. Climatological mean: This baseline estimates rainfall by computing the mean rainfall for165

the same calendar day across all previous years (1901–2011). It captures long-term seasonal166

trends and is used to benchmark model performance against historical averages.167

3. Rolling mean (20 Days): This baseline forecasts rainfall as the average rainfall over the168

preceding 20 days for each grid point. It captures recent trends and smooths short-term169

variability but does not incorporate spatial or seasonal context.170
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4. AR(1) - Temporal linear model: This autoregressive baseline uses only the previous day’s171

rainfall value at each grid point to forecast the next day’s rainfall. A simple linear regression172

model is fit using this single temporal lag as input.173

5. AR(5) + spatial grids - spatiotemporal linear model: This extends the autoregressive174

approach by incorporating the past 5 days of rainfall data for each grid point along with its175

four immediate neighboring grid points (up, down, left, right). A linear regression model is176

trained using this spatiotemporal input.177

d. Loss function178

Since rainfall forecasting is a regression task, the mean squared error (MSE) is the conventional179

choice of loss function. However, during training, we found that models optimized with MSE180

tend to produce overly smooth predictions that fail to capture extreme rainfall events. This behav-181

ior is particularly evident in Figures 1a and 1b, where MSE-trained models (dotted line) track the182

long-term average but significantly underestimate peaks for Mumbai and Ahmedabad, respectively.183

This limitation stems from MSE’s symmetric treatment of over- and underestimation errors, which184

biases the model toward minimizing large deviations without prioritizing rare but high-impact185

events.186

To address this, we propose a peak-biased loss function that places greater emphasis on underes-187

timation. This reflects the practical importance of accurately forecasting extreme rainfall, where188

missing a peak can have far more serious consequences than a false alarm. The loss function is189

defined as:190

! =

1

#

#
∑

C=1

[

I(ÂC < AC) · |AC − ÂC |U + I(ÂC > AC) · |ÂC − AC |V
]

, (1)

where AC and ÂC denote the observed and predicted rainfall at time C, respectively, and U > V ensures191

that underestimation is penalized more heavily than overestimation. We use U = 1.5, V = 1.0,192

selected empirically to optimize forecast quality.193

To validate this choice, we conduct a sensitivity analysis across various values of U and V. Results194

across all percentiles (Tables A1–A4) consistently show U = 1.5, V = 1.0 achieving optimal balance195

between detection accuracy and false alarm rates.196
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This design is also supported by prior work addressing rare event prediction. For instance, Shi197

et al. (2017) and Xu et al. (2024) use such custom weighted loss functions to improve performance198

on infrequent but critical events.199

The advantage of our loss function is also visually evident. In the case of Mumbai (Figure 1a),200

the model trained with the peak-biased loss (dashed line) captures multiple significant rainfall201

events missed by the MSE-trained model, particularly between days 20-40 and near day 50. In202

Ahmedabad (Figure 1b), the peak-biased model estimates the ∼130mm rainfall at day 50 more203

accurately, while the MSE model significantly underpredicts it.204

For completeness, we report both the proposed peak-biased loss ! and MSE on the test set (Tables 2205

and 3). The trends are consistent across both metrics: lower MSE corresponds to lower !, with206

peak-biased models outperforming in both average error and peak detection.207

(a) (b)

Fig. 1: Plots comparing the predictions generated by the same Autoformer model under MSE and
the proposed peak-biased loss in (a) Mumbai and (b) Ahmedabad respectively.

e. Feature selection208

We adopt a sequential feature selection approach to identify input variables for forecasting209

rainfall. This greedy algorithm adds one variable at a time, selecting at each step the variable that210

yields the greatest reduction in forecasting error, as measured by the peak-biased loss function.211

The process begins by evaluating each variable individually. The variable with the lowest standalone212

error is selected first. At each subsequent step, the model assesses the marginal improvement213

from adding each remaining variable to the current set and selects the one that most improves214

performance. This continues until no further variable leads to a significant reduction in error.215

Table 1 outlines the progression of this selection. Past precipitation is chosen first, achieving the216
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lowest initial error. It is followed by cloud cover, vorticity, humidity, soil moisture, wind, and217

finally temperature, each selected for their incremental contribution to minimizing the loss. This218

method prioritizes immediate gains in predictive accuracy rather than exploring all possible feature219

combinations.220

Table 1: Peak-biased loss (<<1.5 +<<) recorded for different combinations of input variables
using a greedy approach

Variables Cloud Cover H Wind V Wind Temperature Humidity Soil Moisture Vorticity

(CC) (HW) (VW) (T) (H) (SM) (Vo)

Precipitation (Ppt) 19.95 21.13 21.48 21.01 20.71 20.52 20.39

Ppt + CC - 19.63 19.88 20.20 20.01 19.38 19.47

Ppt + CC + Vo - 19.73 19.71 19.36 19.07 19.33 -

Ppt + CC + Vo + H - 18.91 18.96 18.99 - 18.56 -

Ppt + CC + Vo + H + SM - 18.42 18.59 18.53 - - -

f. Model Configuration and Training221

All experiments are conducted in Python, utilizing the TensorFlow and Keras libraries. DL-HD222

and DL-HD+Covariates forecasts are made using the Autoformer architecture. This is a recurrent223

model and we use past 3 days of E variables as input, where 3 ranges from 3 to 20. The number224

of parameters depend roughly linearly on 3, with the number of parameters being approximately225

200M for 3 = 12. This architecture is adopted from Wu et al. (2021). Since there are fewer226

data points, the models for NWP+ and Ensemble are trained using smaller feed-forward neural227

networks, with 2 hidden layers. All models are trained using the Adam optimizer, optimizing the228

peak-biased loss specified in (1). More details on the architecture of these models are given in229

the Appendix b. To ensure robustness of our models, each experiment is conducted across 10230

independent runs, employing randomly generated seeds to initialize neural network parameters231

differently. Performance metrics are reported on the average prediction obtained from these 10232

runs.233

3. Results234

The predictions based on the models specified in Section 2c are compared with the ground truth235

daily rainfall data from IMD. We outline results both in an all-India average sense and separately236

for a set of key cities to capture regional performance differences.237
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a. Comparison for entire India238

The average peak-biased loss over India for 1-day forecasts is presented in Table 2. We also239

compare the spatial distribution of prediction skill for 1 and 3 day prediction on July 15, 2022 in240

Figure 3. From the analysis, we make the following observations:241

1. DL-HD + Covariates achieves the lowest error and outperforms all other models.242

2. Among the climatological baselines, the Rolling Mean (20 Days) performs worst, exhibiting243

81.68% higher error than DL-HD + Covariates, followed by the Climatological Mean with244

59.02% higher error.245

3. Persistence has relatively high error but performs better than the climatological baselines,246

with 39.36% higher MSE.247

4. HRES-NWP performs better than persistence but still has 32.90% higher error relative to248

DL-HD + Covariates.249

5. Pooling neighboring grids in HRES-NWP+ slightly improves over HRES, yet remains 28.21%250

worse than DL-HD + Covariates.251

6. The Ensemble (NWP + DL-HD + Covariates) demonstrates improvement over NWP alone,252

with an error 9.56% higher than DL-HD + Covariates.253

7. The regression-based models, AR(1) and AR(5) + Spatial Grids, perform worse than DL-HD254

+ Covariates, with MSEs 32.18% and 30.98% higher respectively, indicating the DL model’s255

advantage in capturing non-linear patterns beyond lag-based predictors.256

b. Comparison for key cities257

We also analyzed the model performance separately for 20 of the most populated cities spread258

across India. These cities were selected to provide a representative distribution across coastal and259

landlocked regions, and to ensure significant rainfall during the monsoon months (JJAS), which is260

important for evaluating rainfall forecasting accuracy. A map showing the geographical distribution261

of these selected cities is included in Figure 2.262

The average peak-biased loss for these cities is shown in Table 4 for 1-day forecasts, and in263

Table 5 for 3-day forecasts. The last row in both tables shows the excess error percentage of the264
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different forecasts compared to the DL-HD+Covariates forecast. We make similar observations265

here as for the whole of India.266

Figures 4 to 7 graphically compare the different forecasts with the ground truth for the cities267

Mumbai, Bhopal, Ahmedabad, and Chennai, for the months of July and August in 2022, for 1-day268

forecasts. Similar comparisons for 3-day forecasts are shown in Figures 9 to 11.269

It is clear from the figures that DL-HD+Covariates forecasts consistently outperform other270

methods in tracking actual rainfall.271

Fig. 2: Study area map showing the selected 20 cities across India, including both coastal and
landlocked locations. The cities marked with a cross are chosen for detailed analysis based on the
rainfall during JJAS and the population in these cities.
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Spatial distribution of 1-day forecasts for 15 July 2022

(a) IMD Ground Truth (b) DL-HD+Covariates (c) DL-HD

(d) HRES (e) HRES-NWP+ (f) Ensemble

Spatial distribution of 3-day forecasts for 15 July 2022

(g) IMD Ground Truth (h) DL-HD+Covariates (i) DL-HD

(j) HRES (k) HRES-NWP+ (l) Ensemble

Fig. 3: Spatial distribution of forecasts for 15 July 2022. Top: 1-day forecasts. Bottom: 3-day
forecasts. 13



Table 2: Comparison of 1-day ahead precipitation forecasting performance over India at 0.25°

resolution.

Model Peak-biased Loss (mm1.5 +mm) MSE (mm2) % Higher Error vs DL-HD + Covariates

DL-HD + Covariates 18.24 268.59 -

DL-HD 20.90 312.11 16.21

HRES-NWP 22.25 356.97 32.90

HRES-NWP+ 22.13 344.18 28.21

Ensemble 18.96 294.25 9.56

Persistence 25.42 448.10 39.36

Climatological Mean 27.10 510.12 59.02

Rolling Mean (20 Days) 29.75 563.20 81.68

AR(1) 28.58 397.66 32.18

AR(5) + Spatial Grids 27.22 364.21 30.98

Table 3: Comparison of 3-day ahead precipitation forecasting performance over India at 0.25°

resolution.

Model Peak-biased Loss (mm1.5 +mm) MSE (mm2) % Higher Error than DL-HD + Covariates

DL-HD + Covariates 67.28 2878.52 -

DL-HD 81.87 3752.44 30.37

HRES-NWP 85.59 4486.25 55.85

HRES-NWP+ 84.15 3884.24 34.89

Ensemble 74.73 3019.81 4.91

Persistence 114.06 8300.21 188.34

Climatological Mean 120.50 8962.63 211.31

Rolling Mean (20 Days) 126.75 9445.16 228.16

AR(1) 106.42 5386.11 87.18

AR(5) + Spatial Grids 83.45 4707.47 63.44

14



Table 4: Average peak-biased loss (mm1.5 +mm) for 1-day forecasts in grids corresponding to 20
major cities across India

City DL-HD+Covariates DL-HD HRES-NWP HRES-NWP+ Ensemble

Ahmedabad 16.23 18.46 25.34 23.15 17.32

Bangalore 11.76 12.28 14.67 12.33 11.12

Bhopal 24.35 26.76 28.92 27.14 23.98

Bhubaneswar 26.42 29.11 28.04 27.91 27.74

Chandigarh 18.45 18.35 20.42 20.18 19.65

Chennai 10.33 11.15 12.40 12.26 12.18

Coimbatore 10.27 10.77 11.55 11.31 10.09

Delhi 7.44 7.86 12.79 11.77 8.85

Gangtok 38.71 41.47 42.29 41.93 39.33

Hyderabad 18.55 20.28 26.51 23.14 20.08

Indore 11.22 11.41 15.65 15.41 10.40

Kochi 19.26 22.77 26.13 25.42 19.07

Kolkata 35.96 37.58 41.75 40.59 36.86

Lucknow 11.86 11.72 16.46 16.11 11.99

Mumbai 42.48 47.50 66.13 63.81 45.05

Patna 12.71 13.33 15.58 15.51 12.46

Pune 15.11 16.85 25.46 25.29 16.78

Raipur 26.38 27.51 29.53 28.17 28.47

Shimla 9.62 11.77 12.21 11.61 9.82

Vishakhapatnam 23.49 26.75 27.21 27.18 22.53

Total Error 390.60 423.69 499.36 481.01 402.77

%age higher 0 8.38 27.77 23.05 3.08
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Fig. 4: 1-day forecasts for Mumbai in July and August 2022. DL-HD+Covariates predictions
closely track the ground truth, while HRES predictions tend to over estimate the rainfall. The
ensemble is a significant improvement over NWP alone, and can be seen to capture most of the
high rainfall events during this period.

(a) DL-HD + Covariates vs IMD (b) HRES vs IMD

(c) HRES+ vs IMD (d) Ensemble vs IMD
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Fig. 5: 1-day forecasts for Bhopal in July and August 2022.

(a) DL-HD + Covariates vs IMD (b) HRES vs IMD

(c) HRES+ vs IMD (d) Ensemble vs IMD
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Fig. 6: 1-day forecasts for Ahmedabad in July and August 2022. DL-HD+Covariates closely
track the ground truth, capturing most high rainfall events during this period. HRES predictions
consistently overestimate the rainfall

(a) DL-HD + Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD
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Fig. 7: 1-day forecasts for Chennai in July and August 2022. DL-HD+Covariates closely track the
IMD ground truth. HRES predictions consistently overestimate the rainfall

(a) DL-HD + Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD
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Table 5: Average peak-biased loss (<<1.5 +<<) for 3-day forecasts in grids corresponding to 20
major cities across India

City DL-HD+Covariates DL-HD HRES-NWP NWP+ Ensemble

Ahmedabad 58.89 65.22 66.29 65.96 59.88

Bangalore 40.39 44.73 49.11 48.47 38.80

Bhopal 72.25 79.16 82.43 81.57 75.49

Bhubaneswar 56.76 69.46 74.03 74.14 64.32

Chandigarh 45.87 50.25 55.27 53.34 48.19

Chennai 33.53 43.10 51.54 49.78 40.22

Coimbatore 42.15 47.36 50.96 50.48 46.14

Delhi 32.16 32.53 40.53 39.81 32.11

Gangtok 79.56 100.39 112.74 109.56 88.46

Hyderabad 42.27 50.27 54.13 54.22 44.91

Indore 57.42 57.29 62.94 60.41 56.71

Kochi 59.49 69.56 74.21 74.44 62.24

Kolkata 94.26 112.73 118.36 115.40 99.18

Lucknow 30.71 34.58 53.91 51.76 32.15

Mumbai 153.56 201.28 215.68 211.42 166.77

Patna 29.93 34.22 41.39 41.14 30.28

Pune 40.75 50.45 54.23 52.61 46.86

Raipur 64.66 73.29 81.64 80.11 70.13

Shimla 22.42 31.58 34.75 34.49 21.94

Vishakhapatnam 72.48 80.56 76.50 75.93 76.54

Total Error 1130.85 1331.49 1449.77 1423.93 1223.65

%age higher 0 17.62 28.51 26.23 6.37
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Fig. 8: 3-day forecasts for Mumbai in July and August 2022. None of the forecasts track the IMD
ground truth well. However, DL-HD+Covariates capture some of the high and low rainfall events
well, and we see a significant improvement using HRES-NWP+.

(a) DL-HD+Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD
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Fig. 9: 3-day forecasts for Bhopal in July and August 2022.

(a) DL-HD+Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD
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Fig. 10: 3-day forecasts for Ahmedabad in July and August 2022

(a) DL-HD+Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD
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Fig. 11: 3-day forecasts for Chennai in July and August 2022

(a) DL-HD+Covariates vs IMD (b) HRES vs IMD

(c) HRES-NWP+ vs IMD (d) Ensemble vs IMD

c. Additional performance comparisons272

In this section, we compare the performance of the DL-HD + Covariates model and HRES273

using confusion matrices (Figures 12–15) computed across multiple rainfall thresholds, for the274

period 2022-2023. Specifically, we analyze confusion matrices in the 0th, 25th, 50th, and 75th275

rainfall percentiles to capture the behavior of the model over a wide range of rainfall intensities.276

These matrices provide detailed information on each model’s ability to correctly classify rainfall277

occurrences at varying thresholds.278

To quantify classification performance, we report standard metrics derived from the confusion279

matrix: Probability of Detection (POD), False Alarm Ratio (FAR), Probability of False De-280

tection (POFD), and the Critical Success Index (CSI). TP and FP denote true and false positives,281

respectively, and TN and FN denote true and false negatives. The POD measures the fraction of282

actual rainfall events that were correctly predicted as rain, and is computed as POD =
TP

TP+FN
, with283

higher values indicating better sensitivity to rainfall occurrences. The FAR quantifies the propor-284

tion of predicted rainfall events that did not actually occur, and is given by FAR =
FP

TP+FP
; a lower285
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FAR implies improved precision by reducing the number of false alarms. The POFD captures the286

fraction of actual dry days that were incorrectly classified as rainy, calculated as POFD =
FP

FP+TN
,287

and is especially important for operational relevance, as a low POFD reduces unnecessary alerts.288

Finally, the CSI reflects the overall accuracy of rainfall predictions, penalizing both missed events289

and false alarms. It is defined as CSI = TP
TP+FP+FN

, with higher values indicating more skillful and290

balanced classification performance.291

In addition to classification skill, we also report the Correlation Coefficient (CC) between the292

predicted rainfall and the IMD ground truth across all grid points and time steps in Table 7. It293

measures the linear relationship between the predicted and observed rainfall values, and is defined294

as: CC =

∑

8 (%8−%̄) ($8−$̄)√
∑

8 (%8−%̄)2
√
∑

8 ($8−$̄)2
, where %8 and $8 denote the predicted and observed rainfall at295

index 8, and %̄ and $̄ represent their respective means. CC values closer to 1 indicate stronger296

positive correlation, i.e., better agreement between the predicted and observed rainfall.297

Our results, again for the period 2022-2023 (Table 6) demonstrate that DL-HD + Covariates298

consistently outperforms HRES at all examined rainfall percentile thresholds, both in confusion299

matrix statistics and derived skill scores. DL-HD+Covariates shows higher POD across all300

thresholds, reflecting better ability to detect rainfall events. The DL-HD+Covariates model also301

achieves lower FAR, indicating greater reliability in rain predictions. It also more effectively302

avoids false detection of rain during dry periods. Finally, higher CSI values demonstrate better303

overall classification performance when accounting for hits, misses, and false alarms.304

305

DL-HD+Covariates Actual >0 mm Actual ≤0 mm

Predicted >0 mm 136,394 (TP) 15,154 (FP)

Predicted ≤0 mm 15,154 (FN) 1,348,776 (TN)

HRES Actual >0 mm Actual ≤0 mm

Predicted >0 mm 128,500 (TP) 18,200 (FP)

Predicted ≤0 mm 22,100 (FN) 1,355,000 (TN)

Fig. 12: Threshold = 0th Percentile (0 mm)

DL-HD+Covariates Actual >3.5 mm Actual ≤3.5 mm

Predicted >3.5 mm 21,170 (TP) 6,109 (FP)

Predicted ≤3.5 mm 6,109 (FN) 1,475,096 (TN)

HRES Actual >3.5 mm Actual ≤3.5 mm

Predicted >3.5 mm 19,800 (TP) 7,400 (FP)

Predicted ≤3.5 mm 8,200 (FN) 1,480,500 (TN)

Fig. 13: Threshold = 25th Percentile (3.5 mm)
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DL-HD+Covariates Actual >14 mm Actual ≤14 mm

Predicted >14 mm 12,500 (TP) 3,200 (FP)

Predicted ≤14 mm 4,800 (FN) 1,512,000 (TN)

HRES Actual >14 mm Actual ≤14 mm

Predicted >14 mm 11,300 (TP) 4,100 (FP)

Predicted ≤14 mm 5,600 (FN) 1,518,000 (TN)

Fig. 14: Threshold = 50th Percentile (14 mm)

DL-HD+Covariates Actual >26 mm Actual ≤26 mm

Predicted >26 mm 8,400 (TP) 1,900 (FP)

Predicted ≤26 mm 2,300 (FN) 1,530,000 (TN)

HRES Actual >26 mm Actual ≤26 mm

Predicted >26 mm 7,800 (TP) 2,500 (FP)

Predicted ≤26 mm 3,100 (FN) 1,538,000 (TN)

Fig. 15: Threshold = 75th Percentile (26 mm)

Table 6: Comparison of classification metrics at multiple rainfall thresholds for DL-
HD+Covariates and HRES.

Threshold Model POD FAR POFD CSI

0 mm
DL-HD+Covariates 0.900 0.100 0.011 0.818

HRES 0.853 0.124 0.013 0.761

3.5 mm
DL-HD+Covariates 0.776 0.224 0.004 0.634

HRES 0.707 0.272 0.005 0.559

14 mm
DL-HD+Covariates 0.723 0.204 0.002 0.610

HRES 0.669 0.266 0.003 0.538

26 mm
DL-HD+Covariates 0.785 0.184 0.001 0.667

HRES 0.716 0.243 0.002 0.582

Table 7: Correlation coefficient (CC) of predicted rainfall with IMD ground truth for the period
2022–2023.

Model Correlation Coefficient (CC)

DL-HD + Covariates 0.82

DL-HD 0.75

HRES 0.69

NWP+ 0.62

Ensemble 0.81

Persistence 0.49

d. Spatio-temporal information in rainfall observations across India306

To examine the impact of historical context on forecast accuracy, we conducted experiments using307

input lags ranging from 3 to 20 days. We observe a pattern of small but consistently decreasing308

errors with increasing context length, indicating the presence of long-term memory in the data. To309
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further analyze regional variation, we compare the aggregated performance across landlocked and310

coastal regions in Figure 16b. While increased historical context improves forecast accuracy in311

both regions, the gains are more pronounced in landlocked areas. This difference may be attributed312

to the availability of richer surrounding data in landlocked regions, whereas coastal areas are313

adjacent to oceanic regions where IMD precipitation data is unavailable. Incorporating oceanic314

rainfall data could potentially enhance forecast performance in coastal zones.315

Fig. 16: Comparison of average peak biased loss (<<1.5 +<<) for coastal vs landlocked regions.
In (a) the shaded region represents the grids spanning up to 60km from the coastline. (b) compares
the error reduction with context for the different regions.

(a) (b)

e. Spatial performance and consistency316

To assess spatial and annual consistency, we compute the number of grid points across India317

where the DL-HD+Covariates model produced lower daily forecast errors than the NWP baseline318

during the JJAS monsoon months for each year from 2017 to 2022. For each year, we calculate319

a win rate by identifying, at each grid point, whether the DL-HD+Covariates model had a lower320

mean daily error compared to NWP. The total number of such grid points is then plotted annually.321
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Figure 17 illustrates this win count for each monsoon season. We observe that the DL-322

HD+Covariates model wins in a majority of grid points across the country in every year, demon-323

strating its spatial robustness and consistent outperformance of NWP.324

Fig. 17: Annual count of grid points where the DL model produces lower daily forecast errors than
NWP during JJAS from 2017 to 2022

4. Discussion and Conclusion325

In this study, we demonstrated that deep learning models can consistently outperform traditional326

NWP systems, specifically the HRES model, in forecasting monsoon rainfall over India, across327

spatial scales, lead times, and rainfall intensities. The DL-HD+Covariates model achieves a peak-328

biased loss of 18.24 and an MSE of 268.59, surpassing HRES-NWP’s peak-biased loss of 22.25329

(+22% higher) and MSE of 356.97 (+32.9% higher). For a lead time of 3 days, the gap widens: DL’s330

MSE of 2,878.52 contrasts sharply with HRES-NWP’s 4,486.25 (+55.85% higher). These margins331

are consistent nationwide, and across key cities in India. The strong performance of deep learning332

(DL) models in rainfall forecasting can be explained by several physical factors. Traditional NWP333

models use physical equations to simulate the atmosphere. However, many small-scale processes,334

such as convection and cloud formation, occur at scales too fine to be directly resolved, so they335

are handled using simplified parameterizations. These approximations can introduce significant336

errors, especially over the Indian subcontinent, where weather patterns are highly complex and337

variable (Randall et al. 2003; Stensrud 2007). DL models, in contrast, do not rely on such physical338

approximations. Instead, they learn directly from historical data, identifying patterns that improve339

28



forecasts without needing to explicitly simulate physical processes. Another advantage of DL340

models is that they do not require precise initial conditions. NWP forecasts are highly sensitive to341

their initial inputs, and even small errors, particularly in regions with limited observations, such as342

oceans or mountainous areas, can grow quickly and reduce forecast accuracy (Lorenz 1963; Kalnay343

2003). DL models avoid this issue by using past sequences of observations to make predictions,344

making them more robust in data-sparse settings. Finally, the atmosphere behaves in a non-linear345

and sometimes chaotic way, which is difficult for traditional models to capture. DL architectures,346

especially those designed for spatiotemporal data are well-suited to handle this complexity. They347

can learn to represent these chaotic patterns, leading to more accurate and stable forecasts in348

challenging conditions.349

a. Possible future research directions350

Recent works (Kurz et al. 2024; Zheng et al. 2025) have shown that incorporating physics into351

machine learning-based weather models can lead to models that are cheaper to train, more accurate,352

and faster to run. An exciting direction to extend the work of this paper is to develop such models353

for India using IMD data.354

A key direction suggested by our analysis is that more and diverse data relevant to monsoon355

prediction, including radar- and satellite-based data (see Espeholt et al. (2022)), combined with356

carefully selected neural network architecture, are likely to substantially improve existing NWP357

forecasts. However, radar-based data for public use are limited in India, and satellite data tend358

to be bulky and require substantially more computation. We leave incorporating radar-based data359

and satellite data into deep learning-based predictions using IMD data to a more expansive future360

project.361
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APPENDIX369

a. Sensitivity Analysis370

To validate the design of our peak-biased loss function, we conducted a sensitivity analysis371

across different values of the parameters U and V. Tables A1-A4 report the model performance for372

different values of U, and V = 1, across 25-percentile rainfall thresholds.373

The results indicate that U = 1.5 and V = 1.0 provide the best trade-off. This analysis supports the374

empirical choice of asymmetry used in the main experiments and demonstrates the robustness of375

the proposed loss formulation.376

Table A1: Confusion matrices for rainfall threshold ≥ 0 mm (0th percentile) with different U
values (V = 1)

U = 1.0, V = 1 Actual ≥ 0 mm Actual = 0 mm

Predicted ≥ 0 mm 132,450 (TP) 17,820 (FP)

Predicted = 0 mm 19,098 (FN) 1,341,110 (TN)

U = 1.25, V = 1 Actual ≥ 0 mm Actual = 0 mm

Predicted ≥ 0 mm 134,625 (TP) 16,438 (FP)

Predicted = 0 mm 16,923 (FN) 1,342,492 (TN)

U = 1.5, V = 1 Actual ≥ 0 mm Actual = 0 mm

Predicted ≥ 0 mm 136,394 (TP) 15,154 (FP)

Predicted = 0 mm 15,154 (FN) 1,343,776 (TN)

U = 1.75, V = 1 Actual ≥ 0 mm Actual = 0 mm

Predicted ≥ 0 mm 135,840 (TP) 16,225 (FP)

Predicted = 0 mm 15,708 (FN) 1,342,705 (TN)
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Table A2: Confusion matrices for rainfall threshold ≥ 3.5 mm (25th percentile) with different U
values (V = 1)

U = 1.0, V = 1 Actual ≥ 3.5 mm Actual < 3.5 mm

Predicted ≥ 3.5 mm 19,875 (TP) 7,230 (FP)

Predicted < 3.5 mm 7,404 (FN) 1,475,969 (TN)

U = 1.25, V = 1 Actual ≥ 3.5 mm Actual < 3.5 mm

Predicted ≥ 3.5 mm 20,635 (TP) 6,750 (FP)

Predicted < 3.5 mm 6,644 (FN) 1,476,449 (TN)

U = 1.5, V = 1 Actual ≥ 3.5 mm Actual < 3.5 mm

Predicted ≥ 3.5 mm 21,170 (TP) 6,109 (FP)

Predicted < 3.5 mm 6,109 (FN) 1,477,090 (TN)

U = 1.75, V = 1 Actual ≥ 3.5 mm Actual < 3.5 mm

Predicted ≥ 3.5 mm 20,843 (TP) 6,875 (FP)

Predicted < 3.5 mm 6,436 (FN) 1,476,324 (TN)

Table A3: Confusion matrices for rainfall threshold ≥ 14 mm (50th percentile) with different U
values (V = 1)

U = 1.0, V = 1 Actual ≥ 14 mm Actual < 14 mm

Predicted ≥ 14 mm 5,892 (TP) 3,145 (FP)

Predicted < 14 mm 3,201 (FN) 1,498,240 (TN)

U = 1.25, V = 1 Actual ≥ 14 mm Actual < 14 mm

Predicted ≥ 14 mm 6,348 (TP) 2,752 (FP)

Predicted < 14 mm 2,745 (FN) 1,498,633 (TN)

U = 1.5, V = 1 Actual ≥ 14 mm Actual < 14 mm

Predicted ≥ 14 mm 6,735 (TP) 2,358 (FP)

Predicted < 14 mm 2,358 (FN) 1,499,027 (TN)

U = 1.75, V = 1 Actual ≥ 14 mm Actual < 14 mm

Predicted ≥ 14 mm 6,532 (TP) 2,634 (FP)

Predicted < 14 mm 2,561 (FN) 1,498,751 (TN)

b. Neural Network Hyperparameters377

This section describes the design and training setup of the two main models used in this study:378

a transformer-based model (Autoformer) and the simpler neural networks used for NWP+ and379

Ensemble models. Our choices were driven by strong empirical performance and computational380

efficiency.381
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Table A4: Confusion matrices for rainfall threshold ≥ 26 mm (75th percentile) with different U
values (V = 1)

U = 1.0, V = 1 Actual ≥ 26 mm Actual < 26 mm

Predicted ≥ 26 mm 3,106 (TP) 1,254 (FP)

Predicted < 26 mm 1,440 (FN) 1,504,678 (TN)

U = 1.25, V = 1 Actual ≥ 26 mm Actual < 26 mm

Predicted ≥ 26 mm 3,384 (TP) 1,097 (FP)

Predicted < 26 mm 1,162 (FN) 1,504,835 (TN)

U = 1.5, V = 1 Actual ≥ 26 mm Actual < 26 mm

Predicted ≥ 26 mm 3,728 (TP) 818 (FP)

Predicted < 26 mm 818 (FN) 1,505,114 (TN)

U = 1.75, V = 1 Actual ≥ 26 mm Actual < 26 mm

Predicted ≥ 26 mm 3,525 (TP) 936 (FP)

Predicted < 26 mm 1,021 (FN) 1,504,996 (TN)

1) Autoformer Configuration382

We use the Autoformer model (Wu et al. 2021), which is especially well-suited for making383

predictions over long time periods. It works by breaking down weather signals into different384

components and learning patterns over time using attention mechanisms. Key settings include:385

• Transformer Layers: Two layers in both the encoder and decoder, each using 8 attention386

heads. This allows the model to capture complex rainfall patterns across different time scales387

without becoming too heavy.388

• Embedding Size (3model = 512): This size balances detail and efficiency, for the 20-day input389

of 9 weather variables and helping the model learn interactions between them.390

• Feedforward Dimension (3ff = 2048): A larger internal layer helps the model learn complex391

relationships in atmospheric data.392

• Decomposition Kernel (Size 25): This setting helps the model separate short-term fluctua-393

tions (like storms) from longer seasonal trends, which is important for understanding monsoon394

behavior.395

2) NWP+ Configuration396

NWP+ is a basic multilayer perceptron (MLP) that uses weather data from a central grid point,397

along with the 4 neighboring grid cells for better spatial context.398
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• Architecture: A simple neural network with three layers, using 32, 16, and 1 neurons. This399

structure is compact because of limited data.400

• Activations: ReLU is used in the hidden layers to handle spikes in rainfall, while the final401

output uses a sigmoid to keep predictions in a reasonable range after normalization.402

• Spatial Context: Including nearby grid points helps improve the model’s accuracy, especially403

for short-term predictions. Adding more distant points didn’t help much, so we kept the404

neighborhood small.405

3) Training Strategy406

• Batch Size: We use a larger batch (64) for the transformer to fully utilize GPU resources, and407

a smaller one (24) for the MLP due to memory limits.408

• Learning Rate: The transformer uses a smooth cosine decay schedule, while the MLP uses409

a step-wise decrease every 50 epochs to help stabilize learning.410

• Regularization: To avoid overfitting and training issues, we use weight decay and clip411

gradients that grow too large.412

• Early Stopping: We monitor performance on a validation set and stop training if there’s413

no improvement after 10–20 epochs. We also limit the training to a maximum of 100–300414

epochs.415

• Mixed Precision: We train the Autoformer using half-precision (FP16), which speeds things416

up and reduces memory usage.417

4) Input and Output Processing418

• Normalization: Input features are standardized using data from 2017–2021. This keeps the419

data consistent while still allowing year-to-year differences to be learned.420

• Prediction Target: The models forecast daily rainfall for the next 1 to 3 days.421
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